What is involved in developing a scientific theory? (2)

In my previous post, I suggested that forming the theory that the Earth was a planet that went around the sun was an interesting example of how a scientist forms a theory. When starting, the first task is to review the literature, which at the time, was largely determined by Aristotle. Since Aristotle asserted that the earth was fixed, it therefore follows that you must first overturn his assertions. One place to start is to decide why we have day and night. Let us use Aristotle’s own methodology, which is to break the issue down into discrete issues. Thus we say, either the Earth is fixed and everything rotates around it, or everything is more or less fixed, and the Earth rotates. Aristotle had reached that step, and had “proven” that the Earth did not rotate. Therefore the day/night must occur through the sun orbiting the Earth. The heliocentric theory, despite its advantages, is falsified unless we can falsify Aristotle’s proofs.

At this point, we should recognize that Aristotle was very clear on one point, and he has been badly misrepresented on this ever since. Aristotle clearly asserted that logic must be applied to experimental observations, and that observation alone was critical. So, what was his experiment? Aristotle argued that if you threw a stone vertically into the air, it always came back to the same place. Had the earth been rotating, the path length of a rotation increased with height, in which case the stone should drag back westwards. It did not, so the earth did not rotate. Note that at this point, Aristotle was effectively arguing for the conservation of angular momentum, similarly to the ice skater slowing her spin by extending her arms. Before reading any further, what do you think about Aristotle’s experiment? What is wrong, and how would you correct it, bearing in mind you have only ancient technology?

In my ebook, Athene’s Prophecy, my protagonist dismisses the experiment by arguing that vertical is defined as the point where the stone falls back to the same place. By defining the point thus, if the stone does not come back to the same place, it was not thrown vertically. He then criticizes Aristotle by arguing that the correct way to do the experiment is to simply drop the stone from a high tower. The reason is that while Aristotle would be correct in that there should be a drag to the west going up, exactly the opposite should occur on the way back down. What should happen if dropped from a tower is that the stone would strike the ground slightly to the east of the vertical position, and in Rhodes, where this was being discussed, also slightly to the south. Can you see why?

That the stone should go east follows from the fact that the angular velocity is constant, but the path length is longer the higher you are, so it is going east faster higher up. The reason it goes south is because the stone falls towards the centre of the earth, and thus very slightly decreases its latitude, but the point at the base of the tower does not. In my ebook, however, my protagonist wisely refused to carry out the experiment, because it is not that easy to carry out, even with modern equipment, and in those days the errors in measurement would most likely exceed the effect. Notwithstanding that, the logic is correct in that any effect like that going up will be exactly countered coming down, and consequently Aristotle’s “proof” is not valid. Thus one can falsify an experiment through logic alone. Of course, disproving Aristotle does not prove the earth is rotating, but it leaves it open as a possibility. Carrying out the dropped stone experiment would, provided you could guarantee that what you saw was real and not experimental error. That is not easy to do, even now.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s