# Ancient Physics – What Causes Tides? The Earth Moves!

I am feeling reasonably pleased with myself because I now have book 2 of my Gaius Claudius Scaevola trilogy, Legatus Legionis, out as an ebook on Amazon. This continues the story set during the imperium of Caligulae, and the early imperium of Claudius, and concludes during the invasion of Britain. I shall discuss some of the historical issues in later posts, but the story also has an objective of showing what science is about.

In my last post, I showed how the ancients could “prove” the Earth could not go around thy Sun. Quite simply, orbital motion is falling motion, and if things fell at different rates depending on their mass, the Earth would fall to bits. It doesn’t. So, what went wrong? Quite simply, nobody checked, and even more surprisingly, nobody noticed. Why not? My guess is that, quite simply, they knew, it was obvious, so why bother looking? So the first part is showing the Earth moves around the Sun is to have my protagonist actually see three things fall off a high bridge, and what he sees persuades him to check. I think that part of success in science comes from having an open mind and observing things despite the fact that you were not really intending to look for them. It is the recognizing that which you did not expect that leads to success.

That, however, merely permits the Earth to go around the Sun. The question then is, how could you prove it, at the time? My answer is through the tides. What do you think causes the tides? Quite often you see the statement that the Moon pulls on the water. While true, this is a bit of an oversimplification because it does not lift the water; if it did, there would be a gap below. In fact, the vector addition of forces shows the Moon makes an extremely small change in the Earth’s gravity, and the net force is still very strongly downwards. To illustrate, do you really think you can jump higher when the Moon is above you? There is a second point. In orbital motion (and the Earth goes around a centre of gravity with the Moon) all things fall at the same acceleration, but the falling is cancelled out because the sideways velocity takes the body away at exactly the correct rate to compensate. This allowed my protagonist to see what happens (although the truth is a little more complicated). The key issue is the size of the Earth. The side nearest the Moon is not moving fast enough, so there is a greater tendency to fall towards the Moon; the far side is moving too fast, so there is a greater tendency for water to be thrown outwards. There is, of course, still a strong net force towards the centre of the Earth, but when not directly under the Moon, the two forces are not exactly opposed, and hence the water flows sideways towards the point under the Moon. The same thing happens for the Sun. This is admittedly somewhat approximate, but what I have tried to capture is how someone in the first century who did not know the answer could conceivably reach the important conclusion, namely that the Earth moves. If it moves, because the Sun stays the same size, it must move in a circle. (It actually moves in an ellipse, but the eccentricity is so small you cannot really detect the change in the size of the Sun.)

What I hope to have shown in these posts, and in the two novels, is the excitement of science, how it works and what is involved using an example that should be reasonably comprehensible to all. The same principles apply in modern science, except of course that once the basic idea is obtained, the following work is a bit more complicated.