Was there an Initial Atmosphere from Accretion?

One of the problems with modern science is that once a paradigm has been selected, a layer of “authorities” is set up, and unless the scientist adopts the paradigm, little notice is taken of him or her. This is where conferences become important, because there is an audience that is more or less required to listen. The problem then for the person who has a different view is to show why that view is important enough to be considered. The barrier is rightly high. A new theory MUST do something the old one did not do, and it must not be contradicted by known facts. As I said, a high barrier.

In the previous post, I argued that the chemicals required for life did not come from carbonaceous chondrites or comets, and that is against standard thought. Part of the reason this view is held is that the gases had to come from somewhere, so from where? There are two obvious possible answers. The first is the gases were accreted with the planet as an atmosphere. In this hypothesis, the Earth formed while the disk gases were still there and simple gravity held them. Once the accretion disk was removed by the star, the hydrogen and helium were lost to space because Earth’s gravity was not strong enough, but other gases were retained. This possibility is usually rejected, and in this case the rejection is sound.

The first part of the proposition was almost certainly correct. Gases would have been accreted from the stellar disk, even on rocky planets, and these gases were largely hydrogen and helium. The next part is also correct. Once the disk gases were removed, that hydrogen and helium would be lost to space because Earth’s gravity was not strong enough to hold it. However, the question then is, how was it lost? As it happens, insufficient gravity was not the primary cause, and the loss was much faster than simply seeping off into space. Early in the life of a new star there are vicious solar winds and extreme UV radiation. It is generally accepted that such radiation would boil off the hydrogen and helium, and these would be lost so quickly that the other gases would be removed by hydrodynamic drag, and only some of the very heavier gases, such as krypton and xenon could remain. There is evidence to support this proposal, in that for krypton and xenon higher levels of heavier isotopes are observed. This would happen if most of these gases were removed from the top of the atmosphere, and since the lighter isotopes would preferentially find their way there, they would be removed preferentially. Since this is not observed for neon or argon isotopes, the argument is that all neon and argon in the atmosphere was lost this way, and if so, all nitrogen and carbon oxides, together with all water in the atmosphere would be lost. Basically, apart from the amount of krypton and xenon currently in the atmosphere, there would be no other gases. The standard theory of planetary formation has it that the Earth was a ball of magma, and if so, all water on the surface would be in the gas phase, so for quite some time Earth would be a dry lump of rock with an atmosphere that had a pressure that would be so low only the best vacuum pumps today could match it.

There could be the objection that maybe the star was not that active and we did retain some gases. After all, we weren’t around to check. Can you see why not? I’ll give the reason shortly. However, if we accept that the gases could not have come from the accretion disk, the other alternative is they came from below the ground, i.e. they were emitted by volacanic activity. How does that stand up?

One possibility might be that gases, including water, were adsorbed on the dust, then subsequently emitted by volcanoes. You might protest that if the Earth was a magma ocean, all that water would be immediately ejected from the silicates as a gas, but it turns out that while water is insoluble in silica at surface pressures, at pressures of 5000 atmospheres, granitic magma can dissolve up to 10% water at 1100 degrees C, at least according to Wikipedia. Irrespective of the accuracy of the figures, high temperature silicates under pressure most certainly dissolve water, and it probably hydrolyses the silicate structure and makes it far less viscous. It has been estimated that the water remaining in the mantle is 100 times greater than the current oceans so there is no problem in expecting that the oceans were initially emitted by volcanic activity. As an aside, deep in the mantle the pressures are far greater than 5000 atmospheres. This water is also likely to be very important for another reason, namely reducing the viscosity and lowering the magma density. This assists pull subduction, where the dry, or drier, basalt from the surface is denser than the other material around it and hence descends into the mantle. If the water were not there, we would not have plate tectonics, and if there were no plate tectonics, there would be no recycling of carbon dioxide, so eventually all the carbon dioxide on the surface would be converted to lime and there would be nothing for plants to use. End of life!

However, we know that our atmospheric gases were not primarily adsorbed as dust. How do we know that? In the accretion disk the number of nitrogen atoms is roughly the same as the number of neon atoms, and their heats of adsorption on dust are roughly the same. The only plausible physical means of separating them in the accretion disk is selective sublimation from ice, but ice simply could not survive where Earth formed. So, if our nitrogen came from the disk by simple physical means, then we would have roughly the same amount of neon in our atmosphere as nitrogen. We don’t, and the amount of neon we have is a measure of the amount of gas we have from such adsorption. Neon is present at 0.0018%, which is not very much.

So, in answer to the initial question, for a period there was effectively no atmosphere. To go any further we have to consider how the planets formed, and as some may suspect, I do not accept the standard theory for reasons that will become apparent in the next post.

Meanwhile, may I remind readers that my ebooks on Smashwords are on discount through July. Links to novels:

Puppeteer: http://www.smashwords.com/books/view/69696

‘Bot War: https://www.smashwords.com/books/view/677836

Troubles: https://www.smashwords.com/books/view/174203

Meanwhile, if you want to know scientifically about biofuels:

Biofuels: https://www.smashwords.com/books/view/454344


Origin of the Rocky Planet Water, Carbon and Nitrogen

The most basic requirement for life to start is a supply of the necessary chemicals, mainly water, reduced carbon and reduced nitrogen on a planet suitable for life. The word reduced means the elements are at least partly bound with hydrogen. Methane and ammonia are reduced, but so are hydrocarbons, and aminoacids are at least partly reduced. The standard theory of planetary formation has it (wrongly, in my opinion) that none of these are found on a rocky planet and have to come from either comets, or carbonaceous asteroids. So, why am I certain this is wrong? There are four requirements that must be met. The first is, the material delivered must be the same as the proposed source; the second is they must come in the same proportions, the third is the delivery method must leave the solar system as it is now, and the fourth is that other things that should have happened must have.

As it happens, oxygen, carbon, hydrogen and nitrogen are not the same through the solar system. Each exists in more than one isotope (different isotopes have different numbers of neutrons), and the mix of isotopes in an element varies in radial distance from the star. Thus comets from beyond Neptune have far too much deuterium compared with hydrogen. There are mechanisms by which you can enhance the D/H ratio, such as UV radiation breaking bonds involving hydrogen, and hydrogen escaping to space. The chemical bonds to deuterium tend to be several kJ/mol. stronger than bonds to hydrogen. The chemical bond strength is actually the same, but the lighter hydrogen has more zero point energy so it more easily breaks and gets lost to space. So while you can increase the deuterium to hydrogen ratio, there is no known way to decrease it by natural causes. The comets around Jupiter also have more deuterium than our water, so they cannot be the source. The chondrites have the same D/H ratio as our water, which has encouraged people to believe that is where our water came from, but the nitrogen in the chondrites has too much 15N, so it cannot be the source of our nitrogen. Further, the isotope ratios of certain heavy elements such as osmium do not match those on Earth. Interestingly, it has been argued that if the material was subducted and mixed in the mantle, it would be just possible. Given that the mantle mixes very poorly and the main sources of osmium now come from very ancient plutonic extrusions, I have doubts on that.

If we look at the proportions, if comets delivered the water or carbon, we should have five times more nitrogen, and twenty thousand times more argon. Comets from the Jupiter zone get around this excess by having no significant nitrogen or argon, and insufficient carbon. For chondrites, there should be four times as much carbon and nitrogen to account for the hydrogen and chlorine on Earth. If these volatiles did come from chondrites, Earth has to be struck by at least 10^23 kg of material (that is, ten followed by 23 zeros). Now, if we accept that these chondrites don’t have some steering system, based on area the Moon should have been struck by about 7×10^21 kg, which is approximately 9.5% of the Moon’s mass. The Moon does not subduct such material, and the moon rocks we have found have exactly the same isotope ratios as Earth. That mass of material is just not there. Further, the lunar anorthosite is magmatic in origin and hence primordial for the Moon, and would retain its original isotope ratios, which should give a set of isotopes that so not involve the late veneer, if it occurred at all.

The third problem is that we are asked to believe that there was a narrow zone in the asteroid belt that showered a deluge of asteroids onto the rocky planets, but for no good reason they did not accrete into anything there, and while this was going on, they did not disturb the asteroids that remain, nor did they disturb or collide with asteroids closer to the star, which now is most of them. The hypothesis requires a huge amount of asteroids formed in a narrow region for no good reason. Some argue the gravitational effect of Jupiter dislodged them, but the orbits of such asteroids ARE stable. Gravitational acceleration is independent of the body’s mass, and the remaining asteroids are quite untroubled. (The Equivalence Principle – all bodies fall at the same rate, other than when air resistance applies.)

Associated with this problem is there is a number of elements like tungsten that dissolve in liquid iron. The justification for this huge barrage of asteroids (called the late veneer) is that when Earth differentiated, the iron would have dissolved these elements and taken them to the core. However, they, and iron, are here, so it is argued something must have brought them later. But wait. For the isotope ratios this asteroid material has to be subducted; for them to be on the continents, they must not be subducted. We need to be self-consistent.

Finally, what should have happened? If all the volatiles came from these carbonaceous chondrites, the various planets should have the same ratio of volatiles, should they not? However, the water/carbon ratio of Earth appears to be more than 2 orders of magnitude greater than that originally on Venus, while the original water/carbon ratio of Mars is unclear, as neither are fully accounted for. The N/C ratio of Earth and Venus is 1% and 3.5% respectively. The N/C ratio of Mars is two orders of magnitude lower than 1-2%. Thus if the atmospheres came from carbonaceous chondrites:

Only the Earth is struck by large wet planetesimals,

Venus is struck by asteroidal bodies or chondrites that are rich in C and especially rich in N and are approximately 3 orders of magnitude drier than the large wet planetesimals,

Either Earth is struck by a low proportion of relatively dry asteroidal bodies or chondrites that are rich in C and especially rich in N and by the large wet planetesimals having moderate levels of C and essentially no N, or the very large wet planetesimals have moderate amounts of carbon and lower amounts of nitrogen as the dry asteroidal bodies or chondrites, and Earth is not struck by the bodies that struck Venus,

Mars is struck only infrequently by a third type of asteroidal body or chondrite that is relatively wet but is very nitrogen deficient, and this does not strike the other bodies in significant amounts,

The Moon is struck by nothing,

See why I find this hard to swallow? Of course, these elements had to come from somewhere, so where? That is for a later post. In the meantime, see why I think science has at times lost hold of its methodology? It is almost as if people are too afraid to go against the establishment.