Volatiles on Rocky Planets

If we accept the mechanism I posted before is how the rocky planets formed, we still do not have the chemicals for life. So far, all we have is water and rocks with some planets having an iron core. The mechanism means that until the planet gets gravitationally big enough to attract gas it only accretes solids, together with the water that bonded to the silicates. There re two issues: how the carbon and nitrogen arrived, and if these arrived as solids, which is the only available mechanism, what happened next?

In the outer parts of the solar system the carbon occurs as carbon monoxide, methanol, some carbon dioxide, and “carbon”, which essentially many forms but looks like tar, is partially graphite, and there are even mini diamonds. There are also polyaromatic hydrocarbons, and even alkanes, and some other miscellaneous organic chemicals. Nitrogen occurs as nitrogen gas, ammonia, and some cyanide. As this comes closer to the star, and in the region of the carbonaceous chondrites, it starts getting hot enough for some of this to condense and react on the silicates, which is why these have the aminoacids, etc. However, as you get closer to the star, it gets too hot and seemingly the inner asteroids are mainly just silicates. At this point, the carbon is largely converted to carbon monoxide, and the nitrogenous compounds to nitrogen. However, on some metal oxides or metals, carbon forms carbides, nitrogen nitrides, and some other materials, such as cyanamides are also formed. These are solids, and accordingly these too will be accreted with the dust and be incorporated within the planet.

As the interior of the planet gets hotter, the water gets released from the silicates and they lose their amorphous structure and become rocks. The water reacts with these chemicals and to a first approximation initially produces carbon monoxide, methane and ammonia. Carbon monoxide reacts with water on certain metals and silicates to make hydrocarbons, formaldehyde, which in turn condenses to other aldehydes (on the path to making sugars) ammonia (on the path to make aminoacids) and so on. The chemistry is fairly involved, but basically given the initial mix, temperature and pressure, both in ready supply below the Earth’s surface, what we need for life emerges and will make its way to the surface. Assuming this mechanism is correct, then provided everything is present in an adequate mix, then life should evolve. That leaves open the question, how broad is the “right mix” zone?

Before considering that, it is obvious this mechanism relies on the temperature being correct on at least two times during the planetary evolution. Initially it has to get hot enough to make the cements, and the nitrides and carbides. Superficially, that applies to all rocky planets, but maybe not for the nitrides. The problem here is Mars has very little nitrogen, so either it has gone somewhere, or it was never there. If Mars had ammonia, since it dissolves in ice down to minus 80 degrees C, ammonia on Mars would solve the problem of how could water flow there when it is so cold. However, if that is the case, the nitrogen has to be in some solid form buried below the surface. In my opinion, it was carried there as urea dissolved in water, which is why I would love to see some deep digging there.

The second requirement is that later the temperature has to be cool enough that water can set the cements. The problem with Venus is argued that it was hotter and it only just managed to absorb some water, but not enough. One counter to that is that the hydrogen on Venus has an extremely high deuterium content. The usual explanation for this is that if water gets to the top of the atmosphere, it may be hit with UV which may knock off a hydrogen atom, which is lost to space, and solar wind may take the whole molecule, however water with deuterium is less likely to get there because the heavier molecules are enhanced in the lower atmosphere, or the oceans. If this were true, for Venus to have the deuterium levels it must have started with a huge amount of water, and the mechanism above would be wrong. An embarrassing problem is where is the oxygen from that massive amount of water.

However, the proposed mechanism also predicts a very large deuterium enhancement. The carbon and nitrogen in the atmosphere and in living things has to be liberated from rocks by reaction with water, and what happens is as the water transfers hydrogen to either carbon or nitrogen it also leaves a hydroxyl attached to any metal. Two hydroxyls liberate water and leave an oxide. At this point we recall that chemical bond to deuterium is stronger than that to hydrogen, the reason being that although in theory the two are identical from the electromagnetic interactions, quantum mechanics requires there to be a zero point energy, and somewhat oversimplifying, the amount of such energy is inversely proportional to the square root of the mass of the light atom. Since deuterium is twice the mass of hydrogen, the zero point energy is less, and being less, its bond is stronger. That means there is a preference for the hydrogen to be the one that transfers, and the deuterium eventually turns up in the water. This preferential retaining of deuterium is called the chemical isotope effect. The resultant gases, methane and ammonia as examples, break down with UV radiation and make molecular nitrogen and carbon dioxide, with the hydrogen going to space. The net result of this is the rocky planet’s hydrogen gradually becomes richer in deuterium.

The effects of the two mechanisms are different. For Venus, the first one requires huge oceans; the second one little more than enough water to liberate the gases. If we look at the rocky planets, Earth should have a modest deuterium enhancement with both mechanisms because we know it has retained a very large amount of water. Mars is more tricky, because it started with less water under the proposed accretion of water mechanism, and it has less gravity and we know that all gases there, including carbon dioxide and nitrogen have enhanced heavier isotopes. That its deuterium is enhanced is simply expected from the other enhancements. Venus has about half as much CO2 again as Earth, and three times the amount of nitrogen, little water, and a very high deuterium enhancement. In my mechanism, Venus never had much water in the first place because it was too hot. Most of what it had was used up forming the atmosphere, and then providing the oxygen for the CO2. There was never much on the surface. To start with Venus was only a bit warmer than Earth, but as the CO2 began to build, whereas on Earth much of this would be dissolved in the ocean, where it would react with calcium silicate and also begin weathering the rocks that were more susceptible to weathering, such as dunite and peridotite. (I have discussed this previously: https://wordpress.com/post/ianmillerblog.wordpress.com/833 ), on Venus there were no oceans, and liquid water is needed to form these carbonates.

So, where will life be found? The answer is around any star where rocky planets formed with the two favourable temperature profiles, and ended up in the habitable zone. If more details as found in my ebook “Planetary Formation and Biogenesis” are correct, then this is most likely to occur around a G type star, like our sun, or a heavy K type star. The star also has to be one of the few that ejects it accretion disk remains early. Accordingly life should be fairly well spaced out, which may be why we have yet to run into other life forms.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s