What do we need for life?

One question that intrigues man people is, is there life in the Universe besides what we see? Logic would say, almost certainly yes. The reason is we know there is a non-zero probability that it can form elswhere because it did here. That probability may be small but there is an enormous number of stars in the Universe (something in excess of 10^22 that we can see) that the conditions that led to life here must be reproduced a very large number of times. Of course, while there are such a large number of stars, by far the most are at such an extraordinarily large distance from us that they are essentially irrelevant. For the bulk of them, it took the light more than ten billion years to get here. But if we were to look for life nearby, where would we look? To answer that, we need to ask ourselves, what conditions are needed to get life started? The issue is NOT where can life exist, but rather where can it form. We know life can be found now on Earth in a wide range of environments, but that does not mean it can form there. It can migrate from somewhere else, gradually evolving systems needed to stabilize it to the new environment. The most obvious example is life emerging from the water to live on land. Nobody suggests life did not start in water because you need a solution to move nutrients around.

The first question to ask is, what are the most difficult things to achieve for life to get started? I think the four hardest things to get started are reproduction, energy transport, solubilization, and catalysis. Catalysis is required to make the chemical reactions that are desirable to go faster, and thus get more of the available resources going in the desired direction. (In this, when I use the word “desired” I mean to get on a right track to where life can get going and then support that choice during subsequent evolution. I do not mean to imply some sort of planning or directing.) Solubilization is required because many of the chemicals with functions that will be needed are not soluble in water, and hence they would simply settle out as a layer of brown gunk, which, as an aside, is what happens in many experiments designed to simulate the origin of life. What needs to happen is that something joins on at a place that does not spoil the function and then conveys solubility. Energy transport is a critical problem: if you do not have something that stores energy, functionality is restricted to microdistances from energy inputs.

Each of these critical functions, as well as reproduction, as I shall show below, depend on forming phosphate esters. Thus energy transport is mediated by adenosine tripolyphosphate (ATP), solubilisation of many of the most primitive cofactors that do not contain a lot of nitrogen or hydroxyl groups is aided by an attached adenosine monophosphate (AMP), initial catalysts came from ribozymes, RNA would be the initial source of reproduction, and both ribozymes and RNA (the latter is effectively just far longer strands of the former) are both constructed of AMP or the equivalent with different nucleobases. The commonality is the ribose and phosphate ester.

Catalysis is an interesting problem. Currently, enzymes are used, but life could not have started that way. The reason lies in the complexity of enzymes. The enzyme that will digest other protein, and hence make chemicals available from failed attempts at guessing the structure of a useful enzyme, has a precise sequence of three hundred and fifteen amino acids. There are twenty different common amino acids used (and in abiogenic situations, a lot more available) and these occur in D- and L- configurations, except for glycine, which means the probability of getting this enzyme is two in 39^315. That number is incredibly improbable. It makes selecting a specific proton in the entire Universe trivial in comparison. Worse, that catalyses ONE reaction only. That is not how initial catalysis happened.

Now, look at the problem of reproduction. Once a polymer is formed that can generate some of whatever requirements life needs, if it cannot copy itself, then it is a one-off wonder, and eventually it will degrade and be lost without a trace. Reproduction involves the need to transfer information, which in this case is some sort of a pattern. The problem here is the transfer must be accurate, but not too accurate initially, and we need different entities. By that I mean, if you just reproduced the same entity, such as in polyethene, you have two units of information: what it is and how long it is, but that second one is rather useless because life has no way of measuring the length without having a very large set of reference molecules. What life here chose appears to have been RNA, at least to start with. RNA has two purines and two pyrimidines, and it pairs them in a double helix. When reproduction occurs, one strand is the negative of the other, but if the negative pairs, we now have two strands that are equivalent to each original strand. (you retain the original.) There are four variations possible from the canonical units at any given position, and once you have many millions of units, a lot of information can be coded.

Why ribonucleic acid? The requirement is to be able to transfer information reliably, but not too accurately (I shall explain why not in a later post.) To do that, the polymer strands have to bind, and this occurs through what we call hydrogen bonds, which each give a binding energy of about 13 kJ/mol. These are chosen because they are weak enough to be ruptured, but strong enough you can get preferences. Thus adenine binds with uracil through two hydrogen bonds, which generates a little over 26 kJ/mol. (For comparison, a carbon-carbon bond is about 360 kJ/mol.) To get the 26 kJ/mol. the two hydrogen bonds have to be formed, and that can only happen of the entities have the right groups in the correct rigid configuration. When guanine bonds with cytosine, three such hydrogen bonds are formed, and the attraction is just under 40 kJ/mol. Guanine can also bind with uracil generating 26 kJ/mol., so information transfer is not necessarily totally accurate.

This binding through hydrogen bonds is critical. The bonding is strong enough to give a significant preference for each mer, but once the polymer gets long enough, the total energy (the sum of the energy of the individual pairs) holding the strands together gets to be those energies above multiplied by the number of pairs. If you have a million pairs, the strength of diamond becomes trivial, yet to reproduce, the strands must be separated. Hydrogen bonds can be separated because as the strands start to separate, water also hydrogen bonds and thus makes up for the linking energy. However, that alone is insufficient because the strand itself would be insoluble in water, and if so, the two strands linked together would remain insoluble (for those who know what this means, entropy strongly favours keeping the strands together). To achieve this, we need something that joins the mers into a chain, adds solubility, forms stable chemical bonds in general but is equally capable of being broken so that if the information creates something that is useless, we can recycle the chemicals. Only phosphate fills these requirements, but phosphate does not bind nucleobases together. Something intermediate is required, and that something is ribose.

In the next posts on this topic, I shall show you where this leads in seeing where life might be.

2 thoughts on “What do we need for life?

    • And space ships! I must confess I dislike panspermia as an idea – the entity has to survive the impact energy that throws it into space, and that is likely to be equivalent to Gt of TNT, the journey through space, the entry temperatures which are sufficient to melt the outside of the rock, then if it survives all that it must be presumably in the interior of the rock do it has to get out through the molten surface and find appropriate nutrients there to reproduce. It has also had to manage all this with no damage to its nucleic acids. This makes my chance of winning lotteries look good 🙂

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s