Transport System Fuel. Some passing Comments

In the previous series of posts, I have discussed the question of how we should power our transport systems that currently rely on fossil fuels, and since this will be a brief post, because I have been at a conference for most of this week, I thought it would be useful to have a summary. There are two basic objectives: ensure that there are economic transport options, and reduce the damage we have caused to the environment. The latter one is important in that we must not simply move the problem.

At this stage we can envisage two types of power: heat/combustion and electrical. The combustion source of power is what we have developed from oil, and many of the motors, especially the spark ignition motors, have been designed to optimise the amount of the oil that can be so used. The compression of most spark ignition engines is considerably lower than it could be if the octane rating was higher. These motors will be with us for some time; a car bought now will probably still be on the road in twenty years so what do we do? We shall probably continue with oil, but biofuels do offer an alternative. Some people say biofuels themselves have a net CO2 output in their manufacture. Maybe, but it is not necessary; the main reason would be that the emphasis is put onto producing the appropriate liquids because they are worth more than process heat. Process heating can be provided from a number of other sources. The advantages of biofuels are they power existing vehicles, they can be CO2 neutral, or fairly close to it, we can design the system so it produces aircraft fuel and there is really no alternative for air transport, and there are no recycling problems following usage. The major disadvantages are that the necessary technology has not really been scaled up so a lot of work is required, it will always be more expensive than oil until oil supplies run down so there is a poor economic reason to do this unless missions are taxed, and the use of the land for biofuels will put pressure on food production. The answers are straightforward: do the development work, use the tax system to change the economic bias, and use biomass from the oceans.

There are alternatives, mainly gases, but again, most of them involve carbon. These could be made by reducing CO2, presumably through using photolysis of water (thus a sort of synthetic photosynthesis) or through electricity and to get the scale we really need a very significant source of electricity. Nuclear power, or better still, fusion energy would work, but nuclear power has a relative disappointing reputation, and fusion power is still a dream. Hydrazine would make a truly interesting fuel, although its toxicity would not endear it to many. Hydrogen can work well for buses, etc, that have direct city routes.

Electricity can be delivered by direct lines (the preferred option for trains, trams, etc.), but otherwise it must be by batteries or fuel cells. The two are conceptually very similar. Both depend on a chemical reaction that can be very loosely described as “burning” something but generating electricity instead of heat. In the fuel cell, the material being “burnt” is added from somewhere else, and the oxidising agent, which may be air, must also be added. In the battery, nothing is added, and when what is there is used, it is regenerated by charging.

Something like lithium is almost certainly restricted to batteries because it is highly reactive. Lithium fires are very difficult to put out. The lithium ion battery is the only one that has been developed to a reasonable level, and part of the reason for that is that the original market was for mobile phones and laptops. There are potential shortages of materials for lithium ion batteries, but they would never cut in for those original uses. However, as shown in my previous post, recycling of lithium ion batteries will be very difficult to solve the problem for motor vehicle batteries. One alternative for batteries is sodium, obtainable from salt, and no chance of shortage.

The fuel cell offers some different options. A lot has been made of hydrogen as the fuel of the future, and some buses use it in California. It can be used in a combustion motor, but the efficiencies are much better for fuel cells. The technology is here, and hydrogen-powered fuel cell cars can be purchased, and these can manage 500 km on  single charge, and can totally refuel in about 5 minutes. The problem again is, hydrogen refuelling is harder to find. Methanol would be easier to distribute, but methanol fuel cells as of yet cannot sustain a high power take-off. Ammonia fuel cells are claimed to work almost as well as hydrogen and would be the cheapest to operate. Another possibility I advocated in one of my SF novels is the aluminium/chlorine cell, as aluminium is cheap, although chlorine is a little more dangerous.

My conclusions:

(a)  We need a lot more research because most options are not sufficiently well developed,

(b)  None will out-compete oil for price. For domestic transport, taxes on oil are already there, so the competitors need this tax to not apply

(c)  We need biofuels, if for no other reason that maintaining existing vehicles and air transport

(d)  Such biofuel must come at least partly from the ocean,

(e)  We need an alternative to the lithium ion battery,

(f)  We badly need more research on different fuel cells, especially something like the ammonia cell.

Yes, I gree that is a little superficial, but I have been at a conference, and gave two presentations. I need to come back down a little 🙂

2 thoughts on “Transport System Fuel. Some passing Comments

  1. A lack of fueling stations for fuel cell cars has always sounded like defeatist logic. The technology is superior in big ways (driving range, pollution, energy source abundance). Why after all this time hasn’t the government or billionaire entrepreneurs begun rolling this out?

    • It costs a lot of money to construct a station to sell a new fuel, or to modify an existing station to sell a new fuel, and you cannot simply use part of the existing infrastructure. The problem then is, with a wide range of new options, which ones are economically worth offering. As an example of the problem, an existing hydrocarbon fuel tank may be sealed at the bottom with little more than a layer of water, but put in something like ammonia and the whole lot simply disappears into the ground.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s