The Poor in a Democracy

One issue that is finally coming to public notice is the issue of inequality. When the virus started to make an impression, Jeff Bezos’ net wealth increased by tens of billions of dollars and that was effectively a free result of the increased significance of Amazon. Yes, Bezos did very well to set it up and he deserves a life of wealth, but that much? At the same time, a very large number of small businesses around the world were going bankrupt, workers were being fired, and in lands of plenty, very large numbers of people cannot afford a proper place to live, they struggle to buy enough food and electricity, and their children are hampered because they do not have the money to use internet technology for their learning. 

Let’s forget the virus. Before that, if the nation’s GDP went up, the lower incomes remained stationary; if there was a recession, the poor’s net wealth, if they had any, gets obliterated, and if they get sick they are in real trouble. The State makes policies that favour the rich, the bankers, and so on, and it is the poor who pay for it. How does this happen in a democracy? That it happens is shown by India, the world’s largest democracy. It is now a middle-income country, according to statistics, but it has the world’s largest number of extreme poor and the third largest number of billionaires.

A recent article on democracy in the journal Science used water as an example of 

a resource in limited supply. Suppose there is just enough for everyone to drink and wash. Now the rich can pay for huge private swimming pools so they make political donations, they get their water, and the poor get rationed through water meters and charging. The costs are trivial for the rich, but the poor cannot pay for the cost of the meter and the bureaucracy associated with charging and have enough income left over to pay for children’s education. So why did this situation occur? Essentially because the politicians permit it. The simple answer would be to ban swimming pools, but the rich will never permit that, and their power lies in the fact they fund the politicians’ election programs. There may be sufficient voters to have the overall power, but they cannot organise that advantage.

Further, politicians and parties become weaker if information flows improve. One of the first things you find out about governments is they seldom come clear with what they are doing. Politicians make grandiose generalized statements that sound good, but seldom show what is really occurring with any accuracy. That comment is sparked by the fact that New Zealand is having an election soon, and one thing that happens is there are TV slots in which senior politicians are asked questions from the public. Very seldom is a question answered properly. If you think that is just New Zealand, consider the debate (??) between Trump and Biden last night. Trust me, the NZ debates shine very brightly compared with that chaotic fiasco.

Nevertheless, when the word inequality was raised here, it got swiftly deflected. A recent question related to the effect of low interest rates. Strictly speaking, our government has no say in these – they are set by the Reserve Bank, but nevertheless the argument produced was that lower interest rates means less is paid on mortgages, and hence the poor get the benefit of easier accommodation, with money left over to buy food, etc. 

Yeah, right! Lower interest rates tends to lead to an increase in house prices. First, those with money see less return on bank deposits so take the money to buy assets. Accordingly, you get a booming house market and stock markets have record highs, even though thanks to the virus, businesses are not necessarily doing better business. That means house prices rise, so anyone buying simply pays a similar fraction of their income to the bank in interest, but their capital debt is higher. Because house prices rise, rent rises. The poor have just as little money to spend, or even less, business does not turn over better, while the rich stock up on assets, and probably work out ways to get tax relief for them. Thus lower interest rates are yet again another way to transfer wealth from the poor to the rich. Those who have houses tend to benefit, but they are not the poor.

We also have parties promising lower taxes. The poor would get enough to buy the odd extra loaf of bread a week, while the rich get serious increases because these tax reductions tend to be proportional to the tax. Rent/housing costs increase and that extra loaf of bread is gobbled up by the bankers, plus a lot more. Worse, we have quantitative easing. Either that has to be paid back (and that will not be paid by the rich, even though they are the only ones to benefit) or it will inflate the currency, at which time again the poor lose because the rich have their wealth tied up in assets. If you don’t believe the rich don’t pay tax, see the recent fuss over a certain Donald Trump.So why do the poor put up with this? There seem to me to be two reasons. The first is the poor cannot get themselves organised. They tend to be the ones who don’t vote. They say no party cares about them, but if they are not going to turn up and vote, guess why the parties concentrate on those who will vote. Another interesting point is that parties that nominally favour the poor usually have politicians who are quite wealthy. Getting elected by the poor might be easy, but getting nominated for a party with any show is hideously difficult. Parties pick candidates that will be trouble-free. Donors must not be upset. Which ends up with getting politicians whose major skill lies in getting elected. Asking them then to do something creative, as opposed to doing what the lobbyists want, is too much. Asking for a conscience is just plain silly. It ain’t goin’ to happen any time soon.

Phosphine on Venus

An article was published in Nature Astronomy on 14th September, 2020, that reported the detection of a signal corresponding to the 1 – 0 rotational transition of phosphine, which has a wavelength of 1.123 mm. This was a very weak signal that had to be obtained by mathematical processing to remove artefacts such as spectral “ripple” that originate from reflections. Nevertheless, the data at the end is strongly suggestive that the line is real. Therefore they found phosphine, right? And since phosphine is made from anaerobes and emitted from marsh gas, they found life, right? Er, hold on. Let us consider this in more detail.

First, is the signal real? The analysis detected the HDO signal at 1.126 mm, which is known to be the 2 – 3 rotational transition. That strongly confirms their equipment and analysis was working properly for that species, so this additional signal is likely to be real. The levels of phosphine have been estimated as between 10 – 30 ppb. However, there is a problem because such spectral signals come from changes to the spin rate of molecules. All molecules can only spin at certain quantised energies, but there are a number of options, thus the phosphine was supposed to be from the first excited state to the ground. There are a very large number of possible states, and higher states are more common at higher temperatures. The Venusian atmosphere ranges from about 30 oC near the top to somewhere approaching 500 oC at the bottom. Also, collisions will change spin rates. Most of our data comes from our atmospheric pressure or lower pressures as doing microwave experiments in high-pressure vessels is not easy. The position of the lines depends on the moment of inertia, so different molecules have different energy levels, and there are different ways  of spinning, tumbling, etc, for complicated molecules. Thus it is possible that the signal could be due to something else. However, the authors examined all the alternatives they could think of and only phosphine remained.

This paper rejected sulphur dioxide as a possibility because in the Venusian atmosphere it gets oxidised to sulphuric acid so there  is not enough of it, but phosphine is actually far more easily oxidised. If we look at our atmosphere, there are actually a number of odd looking molecules caused by photochemistry. The Venusian atmosphere would also have photochemistry but since its atmosphere is so different from ours we cannot guess what that is at present. However, for me I think there is a good chance this signal is from a molecule generated photochemically. The reason is the signal is strongest at the equator and fades away at the poles, where the light intensity per unit area is lower. Note that if it were phosphine generated by life and was removed photochemically, you would get the opposite result.

Phosphine is a rather reactive material, and according to the Nature article models predict its lifetime at 80 km altitude as less than a thousand seconds due to photodegradation. They argue its life should be longer lower down because the UV light intensity is weaker, but they overlook chemical reactions. Amongst other things, concentrated sulphuric acid would react instantaneously with it to make a phosphonium salt, and while the phosphine is not initially destroyed, its ability to make this signal is.

Why does this suggest life? Calculations with some fairly generous lifetimes suggest a minimum of about million molecules have to be made every second on every square centimeter of the planet. There is no known chemistry that can do that. Thus life is proposed on the basis of, “What else could it be?” which is a potential logic fallacy in the making, namely concluding from ignorance. On earth anaerobes make phosphine and it comes out as “marsh gas”, where it promptly reacts with oxygen in the air. This is actually rather rare, and is almost certainly an accident caused by phosphate particles  being in the wrong place in the enzyme system. I have been around many swamps and never smelt phosphine. What anaerobes do is take oxidised material and reduce them, taking energy and some carbon and oxygen, and spit out as waste highly reduced compounds, such as methane. There is a rather low probability they will take sulphates and make hydrogen sulphide and phosphine from phosphates. The problem I have is the Venusian atmosphere is full of concentrated sulphuric acid clouds, and enzymes would not work, or last, in that environment. If the life forms were above the sulphuric acid clouds, they would also be above the phosphoric acid, so where would they get their phosphorus? Further, all life needs phosphate: it is the only functional group that has the requirement to link reproductive entities (two to link a polymer, and one to provide the ionic group to solubilize the whole and let the strands separate while reproducing), it is the basis of adenosine tripolyphosphate which is the energy transfer agent for lfe, and the adenosine phosphates are essential solubilizing agents for many enzyme cofactors, in short, no phosphate, no life. Phosphate occurs in rocks so it will be very scarce in the atmosphere, so why would it waste what little that was there to make phosphine?To summarize, I have no idea what caused this signal and I don’t think anyone else has either. I think there is a lot of chemistry associated with the Venusian atmosphere we do not understand, but I think this will be resolved sooner or later, as it has got so much attention.

E-Book discount

From September 18 – 25, Athene’s Prophecy, the first in a series, will be discounted to 99c/99p on Amazon. Science fiction with some science you can try your hand at. The story is based around Gaius Claudius Scaevola, who is asked by Pallas Athene to do three things before he will be transported to another planet, where he must get help to save humanity from total destruction well in the future. The scientific problem is to prove the Earth goes around the Sun with what was known and was available in the first century. Can you do it? Try your luck. Hint: you should use the background in the novel, but think of experiments to check it. I suspect you will fail and if so, the answer is in the following ebook. Meanwhile, the story.  Scaevola is in Egypt for the anti-Jewish riots, then to Syria as Tribunis laticlavius in the Fulminata, then he has the problem of stopping a rebellion when Caligulae orders a statue of himself in the temple of Jerusalem. You will get a different picture of Caligulae than what you normally see, supported by a transcription of a report of the critical meeting regarding the statue by Philo of Alexandria. http://www.amazon.com/dp/B00GYL4HGW

Science is No Better than its Practitioners

Perhaps I am getting grumpy as I age, but I feel that much in science is not right. One place lies in the fallacy ad verecundiam. This is the fallacy of resorting to authority. As the motto of the Royal Society puts it, nullius in verba. Now, nobody expects you to personally check everything, and if someone has measured something and either clearly shows how he/she did it, or it is something that is done reasonably often, then you take their word for it. Thus if I want to know the melting point of benzoic acid I look it up, and know that if the reported value is wrong, someone would have noticed. However, a different problem arises with theory because you cannot measure it. Further, science has got so complicated that any expert is usually an expert in a very narrow field. The net result is that  because things have got so complicated, most scientists find theories too difficult to examine in detail and do defer to experts. In physics, this tends to be because there is a tendency for the theory to descend into obscure mathematics and worse, the proponents seem to believe that mathematics IS the basis of nature. That means there is no need to think of causes. There is another problem, that also drifts over to chemistry, and that is the results of a computer-driven calculation must be right. True, there will be no arithmetical mistake but as was driven into our heads in my early computer lectures: garbage in, garbage out.

This post was sparked by an answer I gave to a chemistry question on Quora. Chemical bonds are usually formed by taking two atoms with a single electron in an orbital. Think of that as a wave that can only have one or two electrons. The reason it can have only two electrons is the Pauli Exclusion Principle, which is a very fundamental principle in physics. If each atom has only one in  such an orbital, they can combine and form a wave with two electrons, and that binds the two atoms. Yes, oversimplified. So the question was, how does phosphorus pentafluoride form. The fluorine atoms have one such unpaired electron each, and the phosphorus has three, and additionally a pair in one wave. Accordingly, you expect phosphorus to form a trifluoride, which it does, but how come the pentafluoride? Without going into too many details, my answer was that the paired electrons are unpaired, one is put into another wave and to make this legitimate, an extra node is placed in the second wave, a process called hybridization. This has been a fairly standard answer in text books.

So, what happened next? I posted that, and also shared it to something called “The Chemistry Space”. A moderator there rejected it, and said he did so because he did not believe it. Computer calculations showed there was no extra node. Eh?? So I replied and asked how this computation got around the Exclusion Principle, then to be additionally annoying I asked how the computation set the constants of integration. If you look at John Pople’s Nobel lecture, you will see he set these constants for hydrocarbons by optimizing the results for 250 different hydrocarbons, but leaving aside the case that simply degenerates into a glorified empirical procedure, for phosphorus pentafluoride there is only one relevant compound. Needless to say, I received no answer, but I find this annoying. Sure, this issue is somewhat trivial, but it highlights the greater problem that some scientists are perfectly happy to hide behind obscure mathematics, or even more obscure computer programming.

It is interesting to consider what a theory should do. First, it should be consistent with what we see. Second, it should encompass as many different types of observation as possible. To show what I mean, in phosphorus pentafluoride example, the method I described can be transferred to other structures of different molecules. That does not make it right, but at least it is not obviously wrong. The problem with a computation is, unless you know the details of how it was carried out, it cannot be applied elsewhere, and interestingly I saw a recent comment in a publication by the Royal Society of Chemistry that computations from a couple of decades ago cannot be checked or used because the details of the code are lost. Oops. A third requirement, in my opinion, is it should assist in understanding what we see, and even lead to a prediction of something new.

Fundamental theories cannot be deduced; the principles have to come from nature. Thus mathematics describes what we see in quantum mechanics, but you could find an alternative mathematical description for anything else nature decided to do, for example, classical mechanics is also fully self-consistent. For relativity, velocities are either additive or they are not, and you can find mathematics either way. The problem then is that if someone draws a wrong premise early, mathematics can be made to fit a lot of other material to it. A major discovery and change of paradigm only occurs if there is a major fault discovered that cannot be papered over.

So, to finish this post in a slightly different way to usual: a challenge. I once wrote a novel, Athene’s Prophecy, in which the main character in the first century was asked by the “Goddess” Athene to prove that the Earth went around the sun. Can you do it, with what could reasonably be seen at the time? The details had already been worked out by Aristarchus of Samos, who also worked out the size and distance of the Moon and Sun, and the huge distances are a possible clue. (Thanks to the limits of his equipment, Aristarchus’ measurements are erroneous, but good enough to show the huge distances.) So there was already a theory that showed it might work. The problem was that the alternative also worked, as shown by Claudius Ptolemy. So you have to show why one is the true one. 

Problems you might encounter are as follows. Aristotle had shown that the Earth cannot rotate. The argument was that if you threw a ball into the air so that when it reached the top of its flight it would be directly above you, when the ball fell to the ground it would be to the east of you. He did it, and it wasn’t, so the Earth does not rotate. (Can you see what is wrong? Hint – the argument implies the conservation of angular momentum, and that is correct.) Further, if the Earth went around the sun, to do so orbital motion involves falling and since heavier things fall faster than light things, the Earth would fall to pieces. Comets may well fall around the Sun. Another point was that since air rises, the cosmos must be full of air, and if the Earth went around the Sun, there would be a continual easterly wind. 

So part of the problem in overturning any theory is first to find out what is wrong with the existing one. Then to assert you are correct, your theory has to do something the other theory cannot do, or show the other theory has something that falsifies it. The point of this challenge is to show by example just how difficult forming a scientific theory actually is, until you hear the answer and then it is easy.

What are We Doing about Melting Ice? Nothing!

Over my more active years I often returned home from the UK with a flight to Los Angeles, and the flight inevitably flew over Greenland. For somewhat selfish reasons I tried to time my work visits in the northern summer, thus getting out of my winter, and the return flight left Heathrow in the middle of the day so with any luck there was good sunshine over Greenland. My navigation was such that I always managed to be at a window somewhere at the critical time, and I was convinced that by my last flight, Greenland was both dirtier and the ice was retreating. Dirt was from dust, not naughty Greenlanders, and it was turning the ice slightly browner, which made the ice less reflective, and thus would encourage melting. I was convinced I was seeing global warming in action during my last flight, which was about 2003.

As reported in “The Economist”, according to an analysis of 40 years of satellite data at Ohio State University, I was probably right. In the 1980s and 1990s, during Greenland summers it lost approximately 400 billion tonnes of ice each summer, by ice melting and by large glaciers shedding lumps of ice as icebergs into the sea. This was not critical at the time because it was more or less replenished by winter snowfalls, but by 2000 the ice was no longer being replenished and each year there was a loss approaching 100 billion t/a. By now the accumulated net ice loss is so great it has caused a noticeable change in the gravitational field over the island. Further, it is claimed that Greenland has hit the point of no return. Even if we stopped emitting all greenhouse gases now, it was claimed, more ice would be progressively lost than could be replaced.

So far the ice loss is raising the oceans by about a millimetre a year so, you may say, who cares? The problem is the end position is the sea will rise 7 metres. Oops. There is worse. Apparently greenhouse gases cause more effects at high latitudes, and there is a lot more ice on land at the Antarctic. If Antarctica went, Beijing would be under water. If only Greenland goes, most of New York would be under water, and just about all port cities would be in trouble. We lose cities, but more importantly we lose prime agricultural land at a time our population is expanding

So, what can be done? The obvious answer is, be prepared to move where we live. That would involve making huge amounts of concrete and steel, which would make huge amounts of carbon dioxide, which would make the overall problem worse. We could compensate for the loss of agricultural land, which is the most productive we have, by going to aquaculture but while some marine algae are the fastest growing plants on Earth, our bodies are not designed to digest them. We could farm animal life such as prawns and certain fish, and these would help, but whether productivity would be sufficient is another matter.

The next option is geoengineering, but we don’t know how to do it, and what the effects will be, and we are seemingly not trying to find out. We could slow the rate of ice melting, but how? If you answer, with some form of space shade, the problem is that orbital mechanics do not work in your favour. You could shade it some of the time, but so what? Slightly more promising might be to generate clouds in the summer, which would reflect more sunlight.

The next obvious answer (OK, obvious may not be the best word) is to cause more snow to fall in winter. Again, the question is, how? Generating clouds and seeding them in the winter might work, but again, how, and at what cost? The end result of all this is that we really don’t have many options. All the efforts at limiting emissions simply won’t work now, if the scientists at Ohio State are correct. Everyone has heard of tipping points. According to them, we passed one and did not notice until too late. Would anything work? Maybe, maybe not, but we won’t know unless we try, and wringing our hands and making trivial cuts to emissions is not the answer.

We Need Facts, not Fake News

Some time ago I wrote a post entitled “Conspiracies and Fake News” (https://ianmillerblog.wordpress.com/2020/02/19/conspiracies-and-fake-news/) and needless to say, I have not succeeded in stopping it. However, it seems to me this is a real problem for changing public policy or getting people to comply with the new policy. To be effective, policy needs to be based on facts, not on what someone would like it to be or fears it might be, or worse, doesn’t even care but feels the need to be seen to say something. Recently, our TV news has had about four different quotes of President Trump saying New Zealand is in a crisis regarding COVID – 19. I don’t want to give the impression it is like Utopia here; it isn’t, and we have our problems but we have a population of five million and so far the total deaths come to 22. Take your own country and multiply that 22 by your population in millions and divide by five. I think you will find we are doing some things right, and our current problems are almost certainly because the quarantine restrictions for returning citizens were too kind. Most obeyed the rules, but there were a very small percentage who did not. Here, the policy did not recognize the fact that some people are totally irresponsible. A few days ago someone who knew he had the virus broke out and went to a local supermarket for something. You cannot run a quarantine like that, and that selfish oaf will have made things much worse for future entrants.

But for me, the worst things are those who spout what can only be termed “fake news”. One lot of people, particularly young people, argue the virus is just like a mild cold. Well, fact check. Mild colds do not kill 800,000 people in a little over half a year. It is true that for the young it seems to be not very hazardous, but for the older people it is serious. Why? Here, understanding of causes might be desirable. Part of the reason may lie in angiotensin-converting enzymes, of which for the present there are two important ones: ACE1 and ACE2. These modulate the effects of angiotensin II (ANG II) that increases blood pressure and inflammation, which in turn leads to various tissue injury. The elderly tend to have more ANG II, which leads to higher blood pressure, etc. ACE2 mitigates the pathological effects of ANG II by breaking it down. However, ANG II does have useful effects, and so the body has ACE1, which leads to an increase in ANG II. If you are wondering where this is going, I apologise, but now to the virus, SARS-Cov-2; it binds to the ACE2 receptors as a way of getting into the cells and stops its action. As a result, ACE1 is busy stimulating ANG II, and too much of that leads to cell scarring, etc. As partial good news, ACE inhibitors, used to treat high blood pressure, block the activity of ACE1, and so may help stop the bad effects of the SARS virus. As to why the young are less affected, they seem to have fewer ACE sites. (The very young also have lower levels of androgens, which stimulate viral reproduction.) The reason I have gone on a little on this is because as you learn the facts, it becomes a little easier to see how this virus might be defeated. You win by logically applying true facts.

Another objection I have heard is the flu is worse, and I heard one assertion that in the 2018 season it killed 1.5 million. The CDC website says the figures are not yet in, but the biggest earlier figure was a little under 800,000 infected sufficiently to be hospitalized. On request for where the 1.5 million came from, no reply. It appears some figures are made up. Another figure that gets bandied around is the infection fatality rate. This is cited as extremely low. How? Because the number of infected are estimated. You can estimate anything you like! However, if the number of harmless infections and hence those with immunity were true, the virus problem would be over. It isn’t.

Some other bad news. First, masks don’t make much difference, then suddenly, yes they do and everyone should wear one. How did this situation arise? In the absence of tests, and hence facts, various people have expressed opinions. Here, you have to ask what you are trying to defend from. If you are trying to defend against coarse droplets any mask will do, but if you want to defend against an aerosol you need something more sophisticated, and it has to fit properly. On the other hand, a mask will not make the situation worse, so from mathematics if you don’t know, wear one and hope.Perhaps the worst news: vaccines are bad. Apparently someone made up the claim that vaccines have mercury in them, or aluminium nanoparticles. There are even claims that vaccines will contain nanobots that allow the authorities to keep track of you. The fact that these do not exist (application of energy conservation laws will indicate a minor problem with them) and if they did, someone in the vaccine business would object is no problem for these near paranoid rumourmongers. If someone knows that such pollutants occur, why don’t they take the samples to the authorities so the perpetrators will get long jail sentences. Oh, didn’t you know the government is out to get you? They are encouraging this to kill off citizens. That is the most ridiculous balderdash out. OK, Putin appears to have ordered specific attacks on people like the Skripals, but besides being incompetent, that is not general, and Western governments would not do that, and if they tried they would be exposed. However, it leaves the question, how can society survive if this sort of nonsense and non-critical thinking continues?