Dark Matter Detection

Most people have heard of dark matter. Its existence is clear, at least so many so state. Actually, that is a bit of an exaggeration. All we know is that galaxies do not behave exactly as General Relativity would have us think. Thus the outer parts of galaxies orbit the centre faster than they should and galaxy clusters do not have the dynamics expected. Worse, if we look at gravitational lensing, where light is bent as it goes around a galaxy, it is bent as if there is additional mass there that we just cannot see. There are two possible explanations for this. One is there is additional matter there we cannot see, which we call dark matter. The other alternative is that our understanding of what gravity behaves like is wrong on a large scale. We understand it very well on the scale of our solar system, but that is incredibly small when compared with a galaxy so it is possible we simply cannot detect such anomalies with our experiments. As it happens, there are awkward aspects of each, although the modified gravity does have the advantage that one explanation is that we might simply not understand how it should be modified.

One way of settling this dispute is to actually detect dark matter. If we detect it, case over. Well, maybe. However, so far all attempts to detect it have failed. That is not critical because to detect something, we have to know what it is, or what its properties are. So far all we can say about dark matter is that its gravity affects galaxies. It is rather hard to do an experiment on a galaxy so that is not exactly helpful. So what physicists have done is to make a guess as to what it will be, and. not surprisingly, make the guess in the form they can do something about it if they are correct. The problem now is we know it has to have mass because it exerts a gravitational effect and we know it cannot interact with electromagnetic fields, otherwise we would see it. We can also say it does not clump because otherwise there would be observable effects on close stars. There will not be dark matter stars. That is not exactly much to work on, but the usual approach has been to try and detect collisions. If such a particle can transfer sufficient energy to the molecule or atom, it can get rid of the energy by giving off a photon. So one such detector had huge tanks containing 370 kg of liquid xenon. It was buried deep underground, and from theory massive particles of dark matter could be separated from occasional neutron events because a neutron would give multiple events. In the end, they found nothing. On the other hand, it is far from clear to me why dark matter could not give multiple events, so maybe they saw some and confused it with stray neutrons.

On the basis that a bigger detector would help, one proposal (Leane and Smirnov, Physical Review Letters 126: 161101 (2021) suggest using giant exoplanets. The idea is that as the dark matter particles collide with the planet, they will deposit energy as they scatter and with the scattering eventually annihilate within the planet. This additional energy will be detected as heat. The point of the giant is that its huge gravitational field will pull in extra dark matter.

Accordingly, they wish someone to measure the temperatures on the surface of old exoplanets of mass between Jupiter and 55 times Jupiter’s mass, and temperatures above that otherwise expected can be allocated to dark matter. Further, since dark matter density should be higher near the galactic centre, and collisional velocities higher, the difference in surface temperatures between comparable planets may signal the detection of dark matter.

Can you see problems? To me, the flaw lies in “what is expected?” In my opinion, one is the question of getting sufficient accuracy in the infrared detection. Gravitational collapse gives off excess heat. Once a planet gets to about 16 Jupiter masses it starts fusing deuterium. Another lies in estimating the heat given off by radioactive decay. That should be understandable from the age of the planet, but if it had accreted additional material from a later supernova the prediction could be wrong. However, for me the biggest assumption is that the dark matter will annihilate, as without this it is hard to see where sufficient energy will come from. If galaxies all behave the same way, irrespective of age (and we see some galaxies from a great distance, which means we see them as they were a long time ago) then this suggests the proposed dark matter does not annihilate. There is no reason why it should, and that our detection method needs it to will be totally ignored by nature. However, no doubt schemes to detect dark matter will generate many scientific papers in the near future and consume very substantial research grants. As for me, I would suggest one plausible approach, since so much else has failed by assuming large particles, is to look for small ones. Are there any unexplained momenta in collisions from the large hadron collider? What most people overlook is that about 99% of the data generated is trashed (because there is so much of it), but would it hurt to spend just a little effort on examining if fine detail that which you do not expect to see much?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s