Could Aliens Know We Are Here?

While an alien could not see us without coming here, why pick here as opposed to all the other stars? We see exoplanets and speculate on whether they could hold life, but how many exoplanets could see our planet, if they held life with technology like ours or a little better? When I wrote the first edition of my ebook “Planetary Formation and Biogenesis” I listed a few techniques to find planets. Then, the most had been found through detecting the wobble of stars through the frequency changes of their line spectra to which a Doppler shift was added. The wobble is caused by the gravity of the planets. Earth would be very difficult to see that way because it is too small. This works best with very large planets very close to stars.

While there are several methods for discovering planets that work occasionally, one is particularly productive, and that is to measure the light intensity coming from the star. If a planet crosses our line of sight, the light dims. Maybe not a lot, but it dims. If you have seen an eclipse of the sun you will get the idea, but if you have seen a transit of Venus or of Mercury you will know the effect is not strong. This is very geometry specific because you have to be able to draw a straight line between your eye, the planet and part of the star and the further the planet is from the star, the smaller the necessary angle. To give an idea of the problem, our planetary system was created more or less on the equatorial plane of the accretion disk that formed the sun, so we should at least see transits of our inner planets, right? Well, not exactly because the various orbits do not lie on one plane. My phrase “more or less” indicates the problem – we have to be exactly edge-on to the plane unless the planet is really close to the star, when geometry lends a hand because the star is so big that something small crossing in front can be seen from wider angles.

Nevertheless, the Kepler telescope has seen many such exoplanets. Interestingly, the Kepler telescope, besides finding a number of stars with multiple planets close to the star has also found a number of stars with only one planet at a good distance from the star. That does not mean there are no other planets; it may mean nothing more than that one is accidentally the only one whose orbital plane lies on our line of sight. The others may, like Venus, be on slightly different planes. When I wrote that ebook, it was obvious that suitable stars were not that common, and since we were looking at stars one at a time over an extended period, not many planets would be discovered. The Kepler telescope changed that because when it came into operation, it could view hundreds of thousands of stars simultaneously.

All of which raises the interesting question, how many aliens, if they had good astronomical techniques, could see us by this method, assuming they looked at our sun? Should we try to remain hidden or not? Can we, if we so desired?

In a recent paper from Nature (594, pp505 – 507 2021) it appears that 1,715 stars within 100 parsecs of the sun (i.e. our “nearest neighbours”) would have been in a position to spot us over the last 5,000 years, while an additional 319 stars will have the opportunity over the next 5,000 years. Stars might look as if they are fixed in position, but actually they are speedily moving, and not all in the same direction. 

Among this set of stars are seven known to have exoplanets, including Ross 128, which could have seen us in the past but no longer, and Teegarden’s star and Trappist-1, which will start to have the opportunity in 29 years and 1642 years respectively. Most of these are Red Dwarfs, and if you accept my analysis in my ebook, then they will not have technological life. The reason is the planets with composition suitable to generate biogenesis will be too close to the star so will be far too hot, and yet probably receive insufficient higher frequency light to drive anything like photosynthesis.

Currently, an Earth transit could be seen from 1402 stars, and this includes 128 G-type stars, like our sun. There are 73 K stars, which may also be suitable to house life. There are also 63 F-type stars. These stars are larger than the sun, from 1.07 to 1.4 times the size, and are much hotter than the sun. Accordingly, they turn out more UV, which might be problematical for life, although the smaller ones may be suitable and the Earth-equivalent planet will be a lot further from the star. However, they are also shorter-lived, so the bigger ones may not have had time. About 2/3 of these stars are in a more restricted transit zone, and could, from geometry, observe an Earth transit for ten hours. So there are a number of stars from which we cannot hide. Ten hours would give a dedicated astronomer with the correct equipment plenty of time to work out we have oxygen and an ozone layer, and that means life must be here.

Another option is to record our radio waves. We have been sending them out for about 100 years, and about 75 of our 1402 stars identified above are within that distance that could give visual confirmation via observing a transit. We cannot hide. However, that does not mean any of those stars could do anything about it. Even if planets around them have life, that does not mean it is technological, and even if it were, that does not mean they can travel through interstellar space. After all, we cannot. Nevertheless, it is an interesting matter to speculate about.

Why Plate Tectonics?

How did plate tectonics start? Why has Earth got them and none of the rocky planets have, at least as far as we know? In my ebook “Planetary Formation and Biogenesis” my explanation as to one of the reasons for why plate tectonics are absent on Mars is that the Martian basaltic mantle appears to have about 17% iron oxide whle Earth has 7 – 11%. This means it cannot make eclogite whereas Earth’s basalt can. Eclogite is a particularly dense silicate and it is only made under serious pressure. 

To see the significance, we have to ask ourselves how plate tectonics works. The core generates hot spots, and hotter mantle material rises and has to push aside other rock, and we get what we call seafloor spreading, although it does not have to be underwater. The African rift valley is an example, in this case a relatively new example where the African plate is dividing, and eventually will have sea between Somalia and the Nubian zone. Similarly, the Icelandic volcanoes are due to “seafloor spreading”. Thus matter coming up pushes the surface plates aside, but then what? On Mars, the cold basalt has nowhere to go so it forms what is called a “stagnant lid”, and heat can only escape through volcanism. On Mars, this resulted in quite significant volcanism about three and a half billion years ago, then this more or less stopped, although not as much as some think because there is evidence of volcanic eruptions around Elysium within the last two million years. The net result is the “lid” gradually gets thicker, and stronger, which means the heat loss of the Martian mantle is actually much less than that of Earth.

On Earth, what happens is that as the basaltic plates get pushed aside, one goes under another, and this is where then eclogite becomes relevant. As the plate goes down, the increased pressure causes the basalt to form eclogite, and because it is denser than its surroundings, gravity makes it go deeper. It is this pull subduction that keeps plate tectonics going.

So, what about Venus? The usual answer is that Venus had a stagnant lid, but at certain intervals the internal heat is so great there is a general overturn and there is a general resurfacing. However, maybe that is not exactly correct. Our problem with Venus is we cannot see the surface thanks to the clouds. The best we can manage is through radar, and recent (June, 2021) information has provided some surprises (Byrne, et al.,   https://doi.org/10.1073/pnas.2025919118).  Basically, what was found was evidence that many of the lowlands had broken into crustal blocks and these blocks are moving relative to each other, in the same way as pack ice moves. The cause would be mantle convection that stresses the crust. The Venusian crust has many landforms, including thin belts where crust has been pushed together to form ridges, or pulled apart to form troughs. However, these ones tend to encompass low-lying regions that are not deformed, but rather appear to be individual blocks that shift, rotate and slide past each other. The authors suggest this what Earth was like before plate tectonics got going.

As to why they started here and not there has no obvious answer. The fact that Earth rotates far more quickly will generate much stronger Coriolis forces. It may be that the absence of water on Venus removes a potential lubricant, but that seems unlikely if blocks of crust are moving. My personal view is that one key point is it needs something to force the crust downwards. Eclogite may pull it down, but something has to push the basalt down to force it to make eclogite. My guess here is that Earth has one thing the other rocky planets do not have: granitic continents. Granite floats on basalt, so if a basaltic mass was pushed against a significant granitic mass, the granite would slide over the top and its weight would push the basalt down. When it made eclogite, the denser basalt would continue its downward motion, pulling a plate with it. Is that right? Who knows, but at least it looks plausible to me.

Where to Look for Alien Life?

One intriguing question is what is the probability of life elsewhere in the Universe? In my ebook, “Planetary Formation and Biogenesis” I argue that if you need the sort of chemistry I outline to form the appropriate precursors, then to get the appropriate planet in the habitable zone your best bet is to have a G-type or heavy K-type star. Our sun is a G-type. While that eliminates most stars such as red dwarfs, there are still plenty of possible candidates and on that criterion alone the universe should be full of life, albeit possibly well spread out, and there may be other issues. Thus, of the close stars to Earth, Alpha Centauri has two of the right stars, but being a double star, we don’t know whether it might have spat out its planets when it was getting rid of giants, as the two stars come as close as Saturn is to our sun. Epsilon Eridani and Tau Ceti are K-type, but it is not known whether the first has rocky planets, and further it is only about 900 million years old so any life would be extremely primitive. Tau Ceti has claims to about 8 planets, but only four have been confirmed, and for two of these, one gets about 1.7 times Earth’s light (Venus get about 1.9 times as much) while the other gets about 29%. They are also “super Earths”. Interestingly, if you apply the relationship I had in my ebook, the planet that gets the most light, is the more likely to be similar geologically to Earth (apart from its size) and is far more likely than Venus to have accreted plenty of water, so just maybe it is possible.

So where do we look for suitable planets? Very specifically how probable are rocky planets? One approach to address this came from Nibauer et al. (Astrophysical Journal, 906: 116, 2021). What they did was to look at the element concentration of stars and picked on 5 elements for which he had data. He then focused on the so-called refractory elements, i.e., those that make rocks, and by means of statistics he separated the stars into two groups: the “regular” stars, which have the proportion of refractory elements expected from the nebular clouds, or a “depleted” category, where the concentrations are less than expected. Our sun is in the “depleted” category, and oddly enough, only between 10 – 30% are “regular”. The concept here is the stars are depleted because these elements have been taken away to make rocky planets. Of course, there may be questions about the actual analysis of the data and the model, but if the data holds up, this might be indicative that rocky planets can form, at least around single stars. 

One of the puzzles of planetary formation is exemplified by Tau Ceti. The planet is actually rather short of the heavy elements that make up planets, yet it has so many planets that are so much bigger than Earth. How can this be? My answer in my ebook is that there are three stages of the accretion disk: the first when the star is busily accreting and there are huge inflows of matter; the second a transition when supply of matter declines, and a third period when stellar accretion slows by about four orders of magnitude. At the end of this third period, the star creates huge solar winds that clear out the accretion disk of gas and dust. However, in this third stage, planets continue accreting. This third stage can last from less than 1 million years to up to maybe forty. So, planets starting the same way will end up in a variety of sizes depending on how long the star takes to remove accretable material. The evidence is that our sun spat out its accretion disk very early, so we have smaller than average planets.

So, would the regular stars not have planets? No. If they formed giants, there would be no real selective depletion of specific elements, and a general depletion would register as the star not having as many in the first place. The amount of elements heavier than helium is called metallicity by astronomers, and this can vary by a factor of at least 40, and probably more. There may even be some first-generation stars out there with no heavy elements. It would be possible for a star to have giant planets but show no significant depletion of refractory elements. So while Nibauer’s analysis is interesting, and even encouraging, it does not really eliminate more than a minority of the stars. If you are on a voyage of discovery, it remains something of a guess which stars are of particular interest.

Interpreting Observations

The ancients, with a few exceptions, thought the Earth was the centre of the Universe and everything rotated around it, thus giving day and night. Contrary to what many people think, this was not simply stupid; they reasoned that it could not be rotating. An obvious experiment that Aristotle performed was to throw a stone high into the air so that it reached its maximum height directly above. When it dropped, it landed directly underneath it and its path was vertical to the horizontal. Aristotle recognised that up at that height and dropped, if the Earth was rotating the angular momentum from the height should carry it eastwards, but it did not. Aristotle was a clever reasoner, but he was a poor experimenter. He also failed to consider consequences of some of his other reasoning. Thus he knew that the Earth was a sphere, and he knew the size of it and thanks to Eratosthenes this was a fairly accurate value. He had reasoned correctly why that was, which was that matter fell towards the centre. Accordingly, he should also have realised his stone should also fall slightly to the south. (He lived in Greece; if he lived here it would move slightly northwards.) When he failed to notice that he should have realized his technique was insufficiently accurate. What he failed to do was to put numbers onto his reasoning, and this is an error in reasoning we see all the time these days from politicians. As an aside, this is a difficult experiment to do. If you don’t believe me, try it. Exactly where is the point vertically below your drop point? You must not find it by dropping a stone!

He also realised that Earth could not orbit the sun, and there was plenty of evidence to show that it could not. First, there was the background. Put a stick in the ground and walk around it. What you see is the background moves and moves more the bigger the circle radius, and smaller the further away the object is. When Aristarchus proposed the heliocentric theory all he could do was make the rather unconvincing bleat that the stars in the background must be an enormous distance away. As it happens, they are. This illustrates another problem with reasoning – if you assume a statement in the reasoning chain, the value of the reasoning is only as good as the truth of the assumption. A further example was that Aristotle reasoned that if the earth was rotating or orbiting the sun, because air rises, the Universe must be full of air, and therefore we should be afflicted by persistent easterly winds. It is interesting to note that had he lived in the trade wind zone he might have come to the correct conclusion for entirely the wrong reason.

But if he did he would have a further problem because he had shown that Earth could not orbit the sun through another line of reasoning. As was “well known”, heavy things fall faster than light things, and orbiting involves an acceleration towards the centre. Therefore there should be a stream of light things hurling off into space. There isn’t, therefore Earth does not move. Further, you could see the tail of comets. They were moving, which proves the reasoning. Of course it doesn’t because the tail always goes away from the sun, and not behind the motion at least half the time. This was a simple thing to check and it was possible to carry out this checking far more easily than the other failed assumptions. Unfortunately, who bothers to check things that are “well known”? This shows a further aspect: a true proposition has everything that is relevant to it in accord with it. This is the basis of Popper’s falsification concept.

One of the hold-ups involved a rather unusual aspect. If you watch a planet, say Mars, it seems to travel across the background, then slow down, then turn around and go the other way, then eventually return to its previous path. Claudius Ptolemy explained this in terms of epicycles, but it is easily understood in term of both going around the sun provided the outer one is going slower. That is obvious because while Earth takes a year to complete an orbit, it takes Mars over two years to complete a cycle. So we had two theories that both give the correct answer, but one has two assignable constants to explain each observation, while the other relies on dynamical relationships that at the time were not understood. This shows another reasoning flaw: you should not reject a proposition simply because you are ignorant of how it could work.I went into a lot more detail of this in my ebook “Athene’s Prophecy”, where for perfectly good plot reasons a young Roman was ordered to prove Aristotle wrong. The key to settling the argument (as explained in more detail in the following novel, “Legatus Legionis”) is to prove the Earth moves. We can do this with the tides. The part closest to the external source of gravity has the water fall sideways a little towards it; the part furthest has more centrifugal force so it is trying to throw the water away. They may not have understood the mechanics of that, but they did know about the sling. Aristotle could not detect this because the tides where he lived are miniscule but in my ebook I had my Roman with the British invasion and hence had to study the tides to know when to sail. There you can get quite massive tides. If you simply assume the tide is cause by the Moon pulling the water towards it and Earth is stationary there would be only one tide per day; the fact that there are two is conclusive, even if you do not properly understand the mechanics.

Venus with a Watery Past?

In a recent edition of Science magazine (372, p1136-7) there is an outline of two NASA probes to determine whether Venus had water. One argument is that Venus and Earth formed from the same material, so they should have started off very much the same, in which case Venus should have had about the same amount of water as Earth. That logic is false because it omits the issue of how planets get water. However, it argued that Venus would have had a serious climatic difference. A computer model showed that when planets rotate very slowly the near absence of a Coriolis force would mean that winds would flow uniformly from equator to pole. On Earth, the Coriolis effect leads to the lower atmosphere air splitting into three  cells on each side of the equator: tropical, subtropical and polar circulations. Venus would have had a more uniform wind pattern.

A further model then argued that massive water clouds would form, blocking half the sunlight, then “in the perpetual twilight, liquid water could have survived for billions of years.”  Since Venus gets about twice the light intensity as Earth does, Venusian “perpetual twilight” would be a good sunny day here. The next part of the argument was that since water is considered to lubricate plates, the then Venus could have had plate tectonics. Thus NASA has a mission to map the surface in much greater detail. That, of course, is a legitimate mission irrespective of the issue of water.

A second aim of these missions is to search for reflectance spectra consistent with granite. Granite is thought to be accompanied by water, although that correlation could be suspect because it is based on Earth, the only planet where granite is known.

So what happened to the “vast oceans”? Their argument is that massive volcanism liberate huge amounts of CO2 into the atmosphere “causing a runaway greenhouse effect that boiled the planet dry.” Ultraviolet light now broke down the water, which would lead to the production of hydrogen, which gets lost to space. This is the conventional explanation for the very high ratio of deuterium to hydrogen in the atmosphere. The concept is the water with deuterium is heavier, and has a slightly higher boiling point, so it would be the least “boiled off”. The effect is real but it is a very small one, which is why a lot of water has to be postulated. The problem with this explanation is that while hydrogen easily gets lost to space there should be massive amounts of oxygen retained. Where is it? Their answer: the oxygen would be “purged” by more ash. No mention of how.

In my ebook “Planetary Formation and Biogenesis” I proposed that Venus probably never had any liquid water on its surface. The rocky planets accreted their water by binding to silicates, and in doing so helped cement aggregate together and get the planet growing. Earth accreted at a place that was hot enough during stellar accretion to form calcium aluminosilicates that make very good cements and would have absorbed their water from the gas disk. Mars got less water because the material that formed Mars had been too cool to separate out aluminosilicates so it had to settle for simple calcium silicate, which does not bind anywhere near as much water. Venus probably had the same aluminosilicates as Earth, but being closer to the star meant it was hotter and less water bonded, and consequently less aluminosilicates.

What about the deuterium enhancement? Surely that is evidence of a lot of water? Not necessarily. How did the gases accrete? My argument is they would accrete as solids such as carbides, nitrides, etc. and the gases would be liberated by reaction with water. Thus on the road to making ammonia from a metal nitride

M – N  + H2O   →  M – OH  +  N-H  ; then  M(OH)2    →  MO + H2O and this is repeated until ammonia is made. An important point is one hydrogen atom is transferred from each molecule of water while one is retained by the oxygen attached to the metal. Now the bond between deuterium and oxygen is stronger than that from hydrogen, the reason being that the hydrogen atom, being lighter, has its bond vibrate more strongly. Therefore the deuterium is more likely to remain on the oxygen atom and end up in further water. This is known as the chemical isotope effect, and it is much more effective at concentrating deuterium. Thus as I see it, too much of the water was used up making gas, and eventually also making carbon dioxide. Venus may never have had much surface water.

How can we exist?

One of the more annoying questions in physics is why are we here? Bear with me for a minute, as this is a real question. The Universe is supposed to have started with what Fred Hoyle called “The Big Bang”. Fred was being derisory, but the name stuck. Anyway what happened is that a very highly intense burst of energy began expanding, and as it did, perforce the energy became less dense. As that happened, out condensed elementary particles. On an extremely small scale, that happens in high-energy collisions, such as in the Large Hadron Collider. So we are reasonably convinced we know what happened up to this point, but there is a very big fly in the ointment. When such particles condense out we get an equal amount of matter and what we call antimatter. (In principle, we should get dark matter too, but since we do not know what that is, I shall leave that.) 

Antimatter is, as you might guess, the opposite of matter. The most obvious example is the positron, which is exactly the same as the electron except it has positive electric charge, so when a positron is around an electron they attract. In principle, if they were to hit each other they would release an infinite amount of energy, but nature hates the infinities that come out of our equations so when they get so close they annihilate each other and you get two gamma ray photons that leave in opposite directions to conserve momentum. That is more or less what happens when antimatter generally meets matter – they annihilate each other, which is why, when we make antimatter in colliders, if we want to collect it we have to do it very carefully with magnetic traps and in a vacuum.

So now we get to the problem of why we are here: with all that antimatter made in equal proportions to matter, why do we have so much matter? As it happens, the symmetry is violated very slightly in kaon decay, but this is probably not particularly helpful because the effect is too slight. In the previous post on muon decay I mentioned that that could be a clue that there might be physics beyond the Standard Model to be unraveled. Right now, the fact that there is so much matter in the Universe should be a far stronger clue that something is wrong with the Standard Model. 

Or is it? One observation that throws that into doubt was published in the Physical Review, D, 103, 083016 in April this year. But before coming to that, some background. A little over ten years ago, colliding heavy ions made a small amount of anti helium-3, and a little later, antihelium-4. The antihelium has two antiprotons, and one or two antineutrons. To make this, the problem is to get enough antiprotons and antineutrons close enough. To give some idea of the trouble, a billion collisions of gold ions with energies of two hundred billion and sixty-two billion electron volts produced 18 atoms of antihelium 4, with masses of 3.73 billion electron volts. In such a collision, the energy requires a temperature of over 250,000 times that of the sun’s core. 

Such antihelium can be detected through gamma ray frequencies when the atoms decay on striking matter, and apparently also through the Alpha Magnetic Spectrometer on the International Space Station, which tracks cosmic rays. The important point is that antihelium-4 behaves exactly the same as an alpha particle, except that, because the antiprotons have negative charge, their trajectories bend in the opposite direction to ordinary nuclei. These antinuclei can be made through the energies of cosmic rays hitting something, however it has been calculated that the amount of antihelium-3 detected so far is 50 times too great to be explained by cosmic rays, and the amount of antihelium-4 detected is 100,000 times too much.

How can this be? The simple answer is that the antihelium is being made by antistars. If you accept them, gamma ray detection indicates 5787 sources, and it has been proposed that at least fourteen of these are antistars, and if we look at the oldest stars near the centre of the galaxy, then estimates suggest up to a fifth of the stars there could be antistars, possibly with antiplanets. If there were people on these, giving them a hug would be outright disastrous for each of you.Of course, caution here is required. It is always possible that this antihelium was made in a more mundane way that as yet we do not understand. On the other hand, if there are antistars, it solves automatically a huge problem, even if it creates a bigger one: how did the matter and antimatter separate? As is often the case in science, solving one problem creates even bigger problems. However, real antistars would alter our view of the universe and as long as the antimatter is at a good distance, we can accept them.

Why We Cannot Get Evidence of Alien Life Yet

We have a curiosity about whether there is life on exoplanets, but how could we tell? Obviously, we have to know that the planet is there, then we have to know something about it. We have discovered the presence of a number of planets through the Doppler effect, in which the star wobbles a bit due to the gravitational force from the planet. The problem, of course, is that all we see is the star, and that tells us nothing other than the mass of the planet and its distance from the star. A shade more is found from observing an eclipse, because we see the size of the star, and in principle we get clues as to what is in an atmosphere, although in practice that information is extremely limited.

If you wish to find evidence of life, you have to first be able to see the planet that is in the habitable zone, and presumably has Earth-like characteristics. Thus the chances of finding evidence of life on a gas giant are negligible because if there were such life it would be totally unlike anything we know. So what are the difficulties? If we have a star with the same mass as our sun, the planet should be approximately 1 AU from the star. Now, take the Alpha Centauri system, the nearest stars, and about 1.3 parsec, or about 4.24 light years. To see something 1 AU away from the star requires an angular separation of about one arc-second, which is achievable with an 8 meter telescope. (For a star x times away, the required angular resolution becomes 1/x arc-seconds, which requires a correspondingly larger telescope. Accordingly, we need close stars.) However, no planets are known around Alpha Centauri A or B, although there are two around Proxima Centauri. Radial velocity studies show there is no habitable planet around A greater than about 53 earth-masses, or about 8.4 earth-masses around B. However, that does not mean no habitable planet because planets at these limits are almost certainly too big to hold life. Their absence, with that method of detection, actually improves the possibility of a habitable planet.

The first requirement for observing whether is life would seem to be that we actually directly observe the planet. Some planets have been directly observed but they are usually super-Jupiters on wide orbits (greater than10 AU) that, being very young, have temperatures greater than 1000 degrees C. The problem of an Earth-like planet is it is too dim in the visible. The peak emission intensity occurs in the mid-infrared for temperate planets, but there are further difficulties. One is the background is higher in the infrared, and another is that as you look at longer wavelengths there is a 2 – 5 times coarser spatial resolution due to the diffraction limit scaling. Apparently the best telescopes now have the resolution to detect planets around roughly the ten nearest stars. Having the sensitivity is another question.

Anyway, this has been attempted, and a candidate for an exoplanet around A has been claimed (Nature Communications, 2021, 12:922 ) at about 1.1 AU from the star. It is claimed to be within 7 times Earth’s size, but this is based on relative light intensity. Coupled with that is the possibility that this may not even be a planet at all. Essentially, more work is required.

Notwithstanding the uncertainty, it appears we are coming closer to being able to directly image rocky planets around the very closest stars. Other possible stars include Epsilon Eridani, Epsilon Indi, and Tau Ceti. But even then, if we see them, because it is at the limit of technology, we will still have no evidence one way or the other relating to life. However, it is a start to look where at least the right sized planet is known to exist. My personal preference is Epsilon Eridani. The reason is, it is a rather young star, and if there are planets there, they will be roughly as old as Earth and Mars were when life started on Earth and the great river flows occurred on Mars. Infrared signals from such atmospheres would tell us what comprised the atmospheres. My prediction is reduced, with a good amount of methane, and ammonia dissolved in water. The reason is these are the gases that could be formed through the original accretion, with no requirements for a bombardment by chondrites or comets, which seemingly, based on other evidence, did not happen here. Older planets will have more oxidized atmospheres that do not give clues, apart possibly if there are signals from ozone. Ozone implies oxygen, and that suggests plants.What should we aim to detect? The overall signal should indicate the temperature if we can resolve it. Water gives a good signal in the infrared, and seeing signals of water vapour in the atmosphere would show that that key material is present. For a young planet, methane and ammonia give good signals, although resolution may be difficult and ammonia will mainly be in water. The problems are obvious: getting sufficient signal intensity, subtracting out background noise from around the planet while realizing the planet will block background, actually resolving lines, and finally, correcting for other factors such as the Doppler effect so the lines can be properly interpreted. Remember phosphine on Venus? Errors are easy to make.

How Fast is the Universe Expanding?

In the last post I commented on the fact that the Universe is expanding. That raises the question, how fast is it expanding? At first sight, who cares? If all the other galaxies will be out of sight in so many tens of billions of years, we won’t be around to worry about it. However, it is instructive in another way. Scientists make measurements with very special instruments and what you get are a series of meter readings, or a printout of numbers, and those numbers have implied dimensions. Thus the number you see on your speedometer in your car represents miles per hour or kilometers per hour, depending on where you live. That is understandable, but that is not what is measured. What is usually measured is actually something like the frequency of wheel revolutions. So the revolutions are counted, the change of time is recorded, and the speedometer has some built-in mathematics that gives you what you want to know. Within that calculation is some built-in theory, in this case geometry and an assumption about tyre pressure.

Measuring the rate of expansion of the universe is a bit trickier. What you are trying to measure is the rate of change of distance between galaxies at various distances from you, average them because they have random motion superimposed, and in some cases regular motion if they are in clusters. The velocity at which they are moving apart is simply change of distance divided by change of time. Measuring time is fine but measuring distance is a little more difficult.  You cannot use a ruler.  So some theory has to be imposed.

There are some “simple” techniques, using the red shift as a Doppler shift to obtain velocity, and brightness to measure distance. Thus using different techniques to estimate cosmic distances such as the average brightness of stars in giant elliptical galaxies, type 1a supernovae and one or two other techniques it can be asserted the Universe is expanding at 73.5 + 1.4 kilometers per second for every megaparsec. A megaparsec is about 3.3 million light years, or three billion trillion kilometers.

However, there are alternative means of determining this expansion, such as measured fluctuations in the cosmic microwave background and fluctuations in matter density of the early Universe. If you know what the matter density was then, and know what it is now, it is simple to calculate the rate of expansion, and the answer is, 67.4 +0.5 km/sec/Mpc. Oops. Two routes, both giving highly accurate answers, but well outside any overlap and hence we have two disjoint sets of answers.

So what is the answer? The simplest approach is to use an entirely different method again, and hope this resolves the matter, and the next big hope is the surface brightness of large elliptical galaxies. The idea here is that most of the stars in a galaxy are red dwarfs, and hence the most “light” from a galaxy will be in the infrared. The new James Webb space telescope will be ideal for making these measurements, and in the meantime standards have been obtained from nearby elliptical galaxies at known distances. Do you see a possible problem? All such results also depend on the assumptions inherent in the calculations. First, we have to be sure we actually know the distance accurately to the nearby elliptical galaxies, but much more problematical is the assumption that the luminosity of the ancient galaxies is the same as the local ones. Thus in earlier times, since the metals in stars came from supernovae, the very earliest stars will have much less so their “colour” from their outer envelopes may be different. Also, because the very earliest stars formed from denser gas, maybe the ratio of sizes of the red dwarfs will be different. There are many traps. Accordingly, the main reason for the discrepancy is that the theory used is slightly wrong somewhere along the chain of reasoning. Another possibility is the estimates of the possible errors are overly optimistic. Who knows, and to some extent you may say it does not matter. However, the message from this is that we have to be careful with scientific claims. Always try to unravel the reasoning. The more the explanation relies on mathematics and the less is explained conceptually, the greater the risk that whoever is presenting the story does not understands it either.

Dark Energy

Many people will have heard of dark energy, yet nobody knows what it is, apart from being something connected with the rate of expansion of the Universe. This is an interesting part of science. When Einstein formulated General Relativity, he found that if his equations were correct, the Universe should collapse due to gravity. It hasn’t so far, so to avoid that he introduced a term Λ, the so-called cosmological constant, which was a straight-out fudge with no basis other than that of avoiding the obvious mistake that the universe had not collapsed and did not look like doing so. Then, when he found from observations that the Universe was actually expanding, he tore that up. In General Relativity, Λ represents the energy density of empty space.

We think the Universe expansion is accelerating because when we look back in time by looking at ancient galaxies, we can measure the velocity of their motion relative to us through the so-called red shift of light, and all the distant galaxies are going away from us, and seemingly faster the further away they are. We can also work out how far away they are by taking light sources and measuring how bright they are, and provided we know how bright they were when they started, the dimming gives us a measure of how far away they are. What two research groups found in 1998 is that the expansion of the Universe was accelerating, which won them the 2011 Nobel prize for physics. 

The next question is, how accurate are these measurements and what assumptions are inherent? The red shift can be measured accurately because the light contains spectral lines, and as long as the physical constants have remained constant, we know exactly their original frequencies, and consequently the shift when we measure the current frequencies. The brightness relies on what are called standard candles. We know of a class of supernovae called type 1a, and these are caused by one star gobbling the mass of another until it reaches the threshold to blow up. This mass is known to be fairly constant, so the energy output should be constant.  Unfortunately, as often happens, the 1a supernovae are not quite as standard as you might think. They have been separated into three classes: standard 1a, dimmer 1a , and brighter 1a. We don’t know why, and there is an inherent problem that the stars of a very long time ago would have had a lower fraction of elements from previous supernovae. They get very bright, then dim with time, and we cannot be certain they always dim at the same rate. Some have different colour distributions, which makes specific luminosity difficult to measure. Accordingly, some consider the evidence is inadequate and it is possible there is no acceleration at all. There is no way for anyone outside the specialist field to resolve this. Such measurements are made at the limits of our ability, and a number of assumptions tend to be involved.

The net result of this is that if the universe is really expanding, we need a value for Λ because that will describe what is pushing everything apart. That energy of the vacuum is called dark energy, and if we consider the expansion and use relativity to compare this energy with the mass of the Universe we can see, dark energy makes up 70% of the total Universe. That is, assuming the expansion is real. If not, 70% of the Universe just disappears! So what is it, if real?

The only real theory that can explain why the vacuum has energy at all and has any independent value is quantum field theory. By independent value, I mean it explains something else. If you have one observation and you require one assumption, you effectively assume the answer. However, quantum field theory is not much help here because if you calculate Λ using it, the calculation differs from observation by a factor of 120 orders of magnitude, which means ten multiplied by itself 120 times. To put that in perspective, if you were to count all the protons, neutrons and electrons in the entire universe that we can see, you would multiply ten by itself about 83 times to express the answer. This is the most dramatic failed prediction in all theoretical physics and is so bad it tends to be put in the desk drawer and ignored/forgotten about.So the short answer is, we haven’t got a clue what dark energy is, and to make matters worse, it is possible there is no need for it at all. But it most certainly is a great excuse for scientific speculation.

Is There a Planet 9?

Before I start, I should remind everyone of the solar system yardstick: the unit of measurement called the Astronomical Unit, or AU, which is the distance from Earth to the Sun. I am also going to define a mass unit, the emu, which is the mass of the Earth, or Earth mass unit.

As you know, there are eight planets, with the furthest out being Neptune, which is 30 AU from the Sun. Now the odd thing is, Neptune is a giant of 17 emu, Uranus is only about 14.5 emu, so there is more to Neptune than Uranus, even though it is about 12 AU further out. So, the obvious question is, why do the planets stop at Neptune, and that question can be coupled with, “Do they?” The first person to be convinced there had to be at least one more was Percival Lowell, he of Martian canal fame, and he built himself a telescope and searched but failed to find it. The justification was that Neptune’s orbit appeared to be perturbed by something. That was quite reasonable as Neptune had been found by perturbations in Uranus’ orbit that were explained by Neptune. So the search was on. Lowell calculated the approximate position of the ninth planet, and using Lowell’s telescope, Clyde Tombaugh discovered what he thought was planet 9.  Oddly, this was announced on the anniversary of Lowell’s birthday, Lowell now being dead. As it happened, this was an accidental coincidence. Pluto is far too small to affect Neptune, and it turns out Neptune’s orbit did not have the errors everyone thought it did – another mistake. Further, Neptune, as with the other planets has an almost circular obit but Pluto’s is highly elliptical, spending some time inside Neptune’s orbit and sometimes as far away as 49 AU from the Sun. Pluto is not the only modest object out there: besides a lot of smaller objects there is Quaoar (about half Pluto’s size) and Eris (about Pluto’s size). There is also Sedna, (about 40% Pluto’s size) that has an elliptical orbit that varies the distance to the sun from 76 AU to 900 AU.

This raises a number of questions. Why did planets stop at 30 AU here? Why is there no planet between Uranus and Neptune? We know HR 8977 has four giants like ours, and the Neptune equivalent is about 68 AU from the star, and that Neptune-equivalent is about 6 times the mass of Jupiter. The “Grand Tack” mechanism explains our system by arguing that cores can only grow by major bodies accreting what are called planetesimals, which are bodies about the size of asteroids, and cores cannot grow further out than Saturn. In this mechanism, Neptune and Uranus formed near Saturn and were thrown outwards and lifted by throwing a mass of planetesimals inwards, the “throwing”: being due to gravitational interactions. To do this there had to be a sufficient mass of planetesimals, which gets back to the question, why did they stop at 30 AU?

One of the advocates for Planet 9 argued that Planet 9, which was supposed to have a highly elliptical orbit itself, caused the elliptical orbits of Sedna and some other objects. However, this has also been argued to be due to an accidental selection of a small number of objects, and there are others that don’t fit. One possible cause of an elliptical orbit could be a close encounter with another star. This does happen. In 1.4 million years Gliese 710, which is about half the mass of the Sun, will be about 10,000 AU from the Sun, and being that close, it could well perturb orbits of bodies like Sedna.

Is there any reason to believe a planet 9 could be there? As it happens, the exoplanets encylopaedia lists several at distances greater that 100 AU, and in some case several thousand AU. That we see them is because they are much larger than Jupiter, and they have either been in a good configuration for gravitational lensing or they are very young. If they are very young, the release of gravitational energy raises them to temperatures where they emit yellow-white light. When they get older, they will fade away and if there were such a planet in our system, by now it would have to be seen by reflected light. Since objects at such great distances move relatively slowly they might be seen but not recognized as planets, and, of course, studies that are looking for something else usually encompass a wide sky, which is not suitable for planet searching.For me, there is another reason why there might be such a planet. In my ebook, “Planetary Formation and Biogenesis” I outline a mechanism by which the giants form, which is similar to that of forming a snowball: if you press ices/snow together and it is suitably close to its melting point, it melt-fuses, so I predict the cores will form from ices known to be in space: Jupiter – water; Saturn – methanol/ammonia/water; Uranus – methane/argon; Neptune – carbon monoxide/nitrogen. If you assume Jupiter formed at the water ice temperature, the other giants are in the correct place to within an AU or so. However, there is one further ice not mentioned: neon. If it accreted a core then it would be somewhere greater than 100 AU.  I cannot be specific because the melting point of neon is so low that a number of other minor and ignorable effects are now significant, and cannot be ignored. So I am hoping there is such a planet there.