Rotation, Rotation

You have probably heard of dark matter. It is the stuff that is supposed to be the predominant matter of the Universe, but nobody has ever managed to find any, which is a little embarrassing when there is supposed to be something like about 6 times more dark matter in the Universe than ordinary matter. Even more embarrassing is the fact that nobody has any real idea what it could be. Every time someone postulates what it is, and work out a way to detect it, they find absolutely nothing. On the other hand there may be a simpler reason for this. Just maybe they postulated what they thought they could find, as opposed to what it is, in other words it was a proposal to get more funds with the uncovering the nature of the Universe as a hoped-for by-product.

The first reason why there might be dark matter came from the rotation of galaxies. Newtonian mechanics makes some specific predictions. Very specifically, the periodic time for an object orbiting the centre of mass at a distance r varies as r^1.5. That means that say there are two orbiting objects, say Earth and Mars, where Mars is about 1.52 times more distant, the Martian year is about 1.88 Earth years. The relationship works very well in our solar system, and it was from the unexpected effects on Uranus that Neptune was predicted, and found to be in the expected place. However, when we take this up to galactic level, things come unstuck. As we move out from the centre, stars move faster than predicted from the speed of those in the centre. This is quite unambiguous, and has been found in many galaxies. The conventional explanation is that enormous quantities of cold dark matter provide the additional gravitational binding.

However, that explanation also has problems. A study of 175 galaxies showed that the radial acceleration at different distances correlated with the amount of visible matter attracting it, but the relationship does not match Newtonian dynamics. If the discrepancies are due to dark matter, one might expect the dark matter to be present in different amounts in different galaxies, and different parts of the same galaxy. Any such relationship should have a lot of scatter, but it hasn’t. Of course, that might be a result of dark matter being attracted to ordinary matter.

There is an alternative explanation called MOND, which stands for modified Newtonian gravity, which proposes that at large distances and small accelerations, gravity decays more slowly than the inverse square law. The correlation of the radial acceleration with the amount of visible matter would be required by something like MOND, so that is a big plus for it, although the only reason it was postulated in this form was to account for what we see. However, a further study has shown there is no simple scale factor. What this means is that if MOBD is correct the effects on different galaxies should be essentially dependent on the mass of visible matter but it isn’t. MOND can explain any galaxy, but the results don’t translate to other galaxies in any simple way. This should rule out MOND without amending the underlying dynamics, in other words, altering Newtonian laws of motion as well as gravity. This may be no problem for dark matter, as different distributions would give different effects. But wait: in the previous paragraph it was claimed there was no scatter.

The net result: there are two sides to this: one says MOND is ruled out and the other says no it isn’t, and the problem is that it is observational uncertainties that suggest it might be. The two sides of the argument seem to be either using different data or are interpreting the same data differently. I am no wiser.

Astronomers have also observed one of the most distant galaxies ever, MACS1149-JD1, which is over ten billion light years away, and it too is rotating, although the rotational velocity is much slower than galaxies that we see that are much closer and nowhere near as old. So why is it slower? Possible reasons include it has much less mass, hence the gravity is weaker.

However, this galaxy is of significant interest because its age makes it one of the earliest galaxies to form. It also has stars in it estimated to be 300 million years old, which puts the star formation at just 270 million years after the Big Bang. The problem with that is it is in the dark period, when matter as we know it had presumably not formed, so how did a collection of stars start? For gravity to cause a star to accrete, it has to give off radiation but supposedly no radiation was given off then. Again, something seems to be wrong. That most of the stars are just this age makes it appear that the galaxy formed about the same time as the stars, or put it another way, something made a whole lot of stars form at the same time in places where the net result was a galaxy. How did that happen? And where did the angular momentum come from? Then again, did it happen? This is at the limit of observational techniques, so have we drawn a non-valid conclusion from difficult to interpret data. Again, I have no idea, but I mention this to show there is a still a lot to learn about how things started.

Radiation Protection on Mars

The settlement of Mars is a popular science fiction staple. I have written some “Mars novels” myself. One criticism of settling Mars is that the planet does not have magnetic field to deflect radiation, so what is the situation? In my ebook “Red Gold” I suggested a magnetic field be generated by a superconductor placed between Mars and the sun, specifically at the first Lagrange point so it would be there continuously. That would divert charged particles in the solar wind. However, suppose you do not do that, what are the options. An account has been written on May 27, 2022 and is at arXiv:2205.13786.

There are two sources of radiation. The first is from the sun and consist mainly of protons, helium nuclei (5 – 8%) and heavier nuclei (~1%). These arrive with energies ranging from some keV to hundreds of MeV. Very occasionally they go to even higher energies, and their intensity varies with the solar cycle. The other source are the cosmic rays. These are accelerated by supernova shocks and interstellar magnetic fields, and appear to come evenly from all directions. They have similar composition to the solar radiation, but they arrive with far higher energies, their average being in the GeV range, and of particular hazard are the high-charge ions, thus there may be particles up to iron that are stripped of their electrons and are travelling through space near the speed of light. It is this high energy and high charge that makes them so dangerous.

The first defence Mars offers is bulk. A person standing on the Martian surface, particularly in a crater, receives less than half what they would receive in space, and that applies to cosmic rays. None of these have energy anywhere nearly enough to go through a planet. The atmosphere, while thin, offers some protection, and will remove protons with less than 150 MeV energy, and possibly more if in a deep enough crater (which is partly why in “Red Gold” I had my settlement near the bottom of Hellas Planitia, the deepest part of Mars.) Accordingly, the major chronic hazard is cosmic radiation, but a sudden strike by a major solar event is also lethal.

There are two types of shielding. The first is active, the use of magnetic or plasma shields, but currently these are theoretical, such as my suggested L1 superconducting magnetic field generator. The second is passive, which is to place matter between the person and the source. At present we are reliant on passive measures. The better materials for stopping such charged particles are those with a high number density of atoms with many electrons per unit mass, which ends up meaning elements of low atomic number. Materials rich in hydrogen such as water or polyethylene perform well, although nothing practical can totally eliminate cosmic radiation.

For settlers on Mars, interactions with the atmosphere lead to neutrons and gamma rays being dominant. Terrain offers protection, thus being adjacent to a cliff will halve the exposure compared with open terrain. The water in regolith will greatly attenuate neutrons with less kinetic energy than 10 MeV. Liquid hydrogen is probably the best, but its extremely low temperature probably makes it impractical. Organic plastics work well; aluminium, which is used in spacecraft, is somewhat less satisfactory, but οn Μars the regolith is probably optimal, because it is already there and hence is cheap. On the other hand, it has to be bound by something, otherwise the wind will blow it away. The article suggests making bricks from regolith. The simplest protection is to live in caves. However, there may be a shortage of caves. People talk about lava tubes, but much of the volcanism on Mars has been around very large volcanoes, or older ones that erupted more in a pyroclastic fashion. They will be short on caves, while settlers are more likely to head for craters, which are not the obvious place to find caves, although rapidly exiting steam might leave one. One place where there might be caves is the Margaritifer Chaos, where there  are signs of massive water outflows from a very small source.

However, living underground does not help plant growth, and the idea of having huge caverns with lights would require a huge investment in lights. It should be easy to make glass that will be opaque to UV radiation and will offer tolerable radiation protection. Silicate uses light atoms and should compare favourably with aluminium. Further, the danger of cosmic rays is largely long-term health; plants for food are not long-lived. One of the main problems for people settling on Mars is the cost and mass of what they have to take with them. Making bricks from regolith is great because regolith is there. The cost of lifting stuff up from Earth and taking it to Mars is huge, so as much as possible has to be made there. That is why lights for the underground growing of food would be very expensive. But the making of any habitat or plant growing area on the surface requires sealing to prevent gas pressure escaping. In my “Red Gold” I suggest one of the very first things that has to be learned is how to make a cement from Martian materials. The ability to make concrete is the first requirement to make the footers of “glass-houses” to grow plants, and cement is necessary to put bricks together. There is an awful lot of detail that has to be addressed because once settlers get there, if they haven’t got something, they cannot go to the corner store and get it.

Betelgeuse Dimmed

First, I apologize for the initial bizarre appearance of my last post. For some reason, some computer decided to slice and dice. I have no idea why, or for that matter, how. Hopefully, this post will have better luck.

Some will recall that around October 2019 the red supergiant Betelgeuse dimmed, specifically from magnitude +0.5 down to +1.64. As a variable star, its brightness oscillates, but it had never dimmed like this before, at least within our records. This generated a certain degree of nervousness or excitement because a significant dimming is probably what happens initially before a supernova. There has been no nearby supernova since that of the crab nebula in 1054 AD.

To put a cool spot into perspective, if Betelgeuse replaced the sun, its size is such it would swallow Mars, and its photosphere might almost reach Saturn. Its mass is estimated at least ten times, or possibly up to twenty times, the mass of the sun. Such a variation sparks my interest because when I pointed out that my proposed dependence of characteristic planetary orbital semimajor axes on the cube of the mass of the star ran into trouble because the stellar masses were not known that well I got criticised by an astronomer: they knew the masses to within a few percent. The difference between ten times the sun’s mass and twenty times is more than a few percent. This is a characteristic of science. They can measure stellar masses fairly accurately in double star systems, then they “carry over” the results,

But back to Betelgeuse. Our best guess as to distance is between 500 – 600 light years. Interestingly, we have observed its photosphere, the outer “shell” of the star that is transparent to photons, at least to a degree, and this is non-spherical, presumably due to stellar pulsations that send matter out from the star. The star may seem “stable” but actually its surface (whatever that means) is extremely turbulent. It is also surrounded by something we could call an atmosphere, an envelope of matter about 250 times the size of the star. We don’t really know its size because these asymmetric pulsations can add several astronomical units (the Earth-sun distance) in selected directions.

Anyway, back to the dimming. Two rival theories were produced: one involved the development of a large cooler cell that came to the surface and was dimmer than the rest of Betelgeuse’s surface. The other was the partial obscuring of the star by a dust cloud. Neither proposition really explained the dimming, nor did they explain why Betelgeuse was back to normal by the end of February, 2020. Rather unsurprisingly, the next proposition was that the dimming was caused by both of those effects.

Perhaps the biggest problem because telescopes could only look at the star sone of them however a Japanese weather satellite ended up providing just the data they needed. This was somewhat inadvertent. The weather satellite was in geostationary orbit 35,786 km above the Western Pacific. It was always looking at half of Earth, and always the same half, but the background was also always constant, and in the background was Betelgeuse. The satellite revealed that the star overall cooled by 140 degrees C. This was sufficient to reduce the heating of a nearby gas cloud, and when it cooled, dust condensed and formed obscuring dust. So both theories were right, and even more strangely, both contributed roughly equally to what was called “the Great Dimming”.

It also suggested more was happening to the atmospheric structure of the star before this happened. By looking at the infrared lines, it became apparent that water molecules in the upper atmosphere that would normally create absorption lines in the star’s spectrum suddenly changed to form emission lines. Something had made them become unexpectedly hotter. The current thinking is that a shock-wave from the interior propelled a lot of gas outwards from the star, leading to a cooler surface, while heating the outer atmosphere. That is regarded as the best current explanation. It is possible that there was a similar dimming event in the 1940s, but otherwise we have not noticed much, but possibly it could have occurred but our detection methods may not have been accurate enough. People may not want to get carried away with, “I think it might be dimmer.” Anyway, for the present, no supernova. But one will occur, probably within the next 100,000 years. Keep looking upwards!

The First Atmosphere

Ι have now published the second edition of my ebook “Planetary Formation and Biogenesis”. It has just under 1290 references, each about a different aspect of the issue, although there is almost certainly a little double counting because references follow chapters, and there will be some scientific papers that are of sufficient importance to be mentioned in two chapters. Nevertheless, there is plenty of material there. The reason for a second edition is that there has been quite a lot of additional; information from the past decade. And, of course, no sooner did I publish than something else came out, so I am going to mention that in this post. In part this is because it exemplifies some of what I think is wrong with modern science. The paper, for those interested, is from Wilcoski et al. Planet Sci J. 3: 99. It is open access so you can read it.

First, the problem it attempts to address: the standard paradigm is that Earth’s atmosphere was initially oxidised, and comprised carbon dioxide and nitrogen. The question then is, when did this eventuate? What we know is the Earth was big enough that if still in the accretion disk it would have had an atmosphere of hydrogen and helium. If it did not accrete until after the disk was expelled, it would have no atmosphere initially, and an atmosphere had to come from some other process. The ebook shows the evidence and in my opinion it probably had the atmosphere of hydrogen. Either way, the accretion disk gets expelled, and assuming our star was the same as others, for the first few hundred million years the star gave off a lot of extremely energetic UV radiation, and that would be sufficient to effectively blow any atmosphere away. So under that scenario, for some number of hundred million years there would be no atmosphere.

There is an opposing option. Shortly after the Moon-forming event, there would be a “Great Bombardment” of massive impactors. There are various theories this would form a magma ocean and there is a huge steam atmosphere, but there is surprisingly little evidence for this, which many hold onto no matter what. The one piece of definite evidence are some zircons from the Jack Hills in Australia, and these are about 4.2 – 4.3 billion years old – the oldest of any rock we have. Some of these zircons show clear evidence that they formed under temperatures not that different from today. In particular, there was water that had oxygen isotope ratios expected of water that had come from rain.

So, let me revisit this paper. The basic concept is that the Earth was bombarded with massive asteroids and the iron core hit the magma ocean, about half of it was sent into the atmosphere (iron boils at 2861 degrees C) where it reacted with water to form hydrogen and ferrous oxide. The hydrogen reacted with nitrogen to form ammonia.

So, what is wrong with that? First, others argue that iron in the magma ocean settles to the core. That, according to them, is why we have a core. Alternatively, others argue if it comes from an asteroid, it emulsifies in the magma. Now we have the iron doing three different kind of things depending on what answer you want. It can do one of them, but not all of them. Should iron vapour get into the atmosphere, it would certainly reduce steam and make hydrogen, but then the hydrogen would not do very much, but rather would be lost to space because of the sun’s UV. The reaction of hydrogen with nitrogen only proceeds to make much ammonia when there is intense pressure. That could happen deep underground. However, in atmospheric pressure at temperatures above the boiling point of iron, ammonia would immediately dissociate and form nitrogen and hydrogen. The next thing that is wrong is that very few asteroids have an iron core. If one did, what would happen to the asteroid when it hit magma? As an experiment, throw ice into water and watch what happens before it tries to reverse its momentum and float (which an asteroid would not do). Basically, the liquid is what gets splashed away. Rock is a very poor conductor of heat, so the asteroid will sink quite deeply into the liquid and will have to melt off the silicates before the iron starts to melt, and then, being denser, it will sink to the core. On top of that it was assumed the atmosphere contained 100 bars of carbon dioxide, and two bars of nitrogen, in other words an atmosphere somewhat similar to that of Venus today. Assuming what was there to get the answer you want is, I suppose, one way of going about things, in a circular sort of way. However, with tidal heating from a very close Moon, such an atmosphere with that much water would never rain, which contradicts the zircon data. What we have is a story that contradicts the very limited physical evidence we have, which has no evidence in favour of it, and was made up to get the answer wanted so they could explain where the chemicals that formed life might have come from. Needless to say, my ebook has a much better account, and has the advantage that no observations contradict it.

Molecular Oxygen in a Comet

There is a pressure, these days, on scientists to be productive. That is fair enough – you don’t want them slacking off in a corner, but a problem arises when this leads to the publication of papers: there are so many of them that nobody can keep up with even a small fraction of them. Worse, many of them do not seem to say much. Up to a point, this has an odd benefit: if you leave a lot unclear, all your associates can publish away and cite you, which has this effect of making you seem more important because funders like to count citations. In short, with obvious exceptions, the less you advance the science, the more important you seem at second level funding. I am going to pick, maybe unfairly, on one paper from Nature Astronomy (https://www.nature.com/articles/s41550-022-01614-1) as an illustration.

One of the most unexpected findings in the coma of comet 67P/Churyumov-Gerasimenko was “a large amount” of molecular oxygen. Something to breathe! Potential space pilots should not get excited; “a large amount” is only large with respect to what they expected, which was none. At the time, this was a surprise to astronomers because molecular oxygen is rather reactive and it is difficult to see why it would be present. Now there is a “breakthrough”: it has been concluded there is not that much oxygen in the comet at all, but this oxygen came from a separate small reservoir. The “clue” came from the molecular oxygen being associated with molecular water when emitted from a warm site. As it got cooler, any oxygen was associated with carbon dioxide or carbon monoxide. Now, you may well wonder what sort of clue that is? My question is, given there is oxygen there, what would you expect? The comet is half water, so when the surface gets warm, it sublimes. When cooler, only gases at that lower temperature get emitted. What is the puzzle?

However, the authors of the paper came to a different conclusion. They decided that there had to be a deep reservoir of oxygen within the comet, and a second reservoir close to the surface that is made of porous frozen water. According to them, oxygen in the core works its way to the surface and gets trapped in the second reservoir. Note that this is an additional proposition to the obvious one that oxygen was trapped in ice near the surface. We knew there was gas trapped in ice that was released with heat, so why postulate multiple reservoirs, other than to get a paper published?

So, where did this oxygen come from? There are two possibilities. The first is it was accreted with the gas from the disk when the comet formed. This is somewhat difficult to accept. Ordinary chemistry suggests that if oxygen molecules were present in the interstellar dust cloud it should react with hydrogen and form water. Maybe that conclusion is somehow wrong, but we can find out. We can estimate the probability by observing the numerous dust clouds from which stars accrete. As far as I am aware, nobody has ever found rich amounts of molecular oxygen in them. The usual practice when you are proposing something unusual is you find some sort of supporting evidence. Seemingly, not this time.

The second possibility is that we know how molecular oxygen could be formed at the surface. High energy photons and solar wind smash water molecules in ice to form hydrogen and hydroxyl radicals. The hydrogen escapes to space but the hydroxyl radicals unite to form hydrogen peroxide or other peroxides or superoxides, which can work their way into the ice. There are a number of other solids that catalyse the degradation of peroxides and superoxides back to oxygen, which would be trapped in the ice, but released when the ice sublimed. So, from the chemist’s point of view there is a fairly ordinary explanation why oxygen might be formed and gather near the surface. From my point of view, Occam’s Razor should apply: you use the simplest explanation unless there is good evidence. I do not see any evidence about the interior of the comet.

Does it matter? From my point of view when someone with some sort of authority/standing says something like this, there is the danger that the next paper will say “X established that . . “  and it becomes almost a gospel. This is especially so when the assertion cannot be easily challenged with evidence as you cannot get inside that comet. Which gives the perverse realization that you need strong evidence to challenge an assertion, but maybe no evidence at all to assert it in the first place. Weird?

Don’t Look Up

No, I am not going to discuss the film, the merits of which you can decide for yourself. However, it might be worth considering some of the things it says about the way we consider and treat science. What the film is supposed to say is that those in society with the power to do something about a crisis wilfully avoid taking action. Consider the excuses for doing nothing.

The film presents a wipe-out event that we will be struck by a comet. The probability of this happening is assessed at 99.8%. So it is not 100%? What we have to recognize that scientific measurements have errors in them. Statistically we make lots of measurements and use a statistical analysis, and while someone in the movie says “Scientists never like to say 100%” that is wrong too. Scientists do not like or dislike; they report the mathematics, and a statistical spread cannot give a 100% because that denies the initial spread. Further, that 0.2% is not physically meaningful either because the errors due to instruments are not randomly probable, but nobody is going to waste time working out the error function for every piece of equipment. Statistical analysis takes care of that. To gain perspective, consider a bag of 1000 50 calibre bullets. You are assured two are blank. One is placed into a gun. What amount of money do you need, if you survive, to put your head in front of the barrel when it is fired?

A second problem for scientists is that long-term realities will be ignored by the public. This more relevant to something like climate change. What are you prepared to do to avoid a major problem fifty years down the track? For many, not a lot, so they ignore the problem on the grounds that it can be dealt with “later”. Related to this are the economic considerations. One response is we cannot afford to do something. When we hear that we seldom see what the costs are of not doing said something. Again, the response might be, but you do not absolutely know that will solve the problem. No, we do not, but that is because we do not think there will be one simple solution for a problem like climate change.

Another response is to rely on technological changes. For an approaching comet, there are probably no other choices. You either construct some space vehicle that will push the comet off course or it strikes you. To make that work, a major investment in development work would be required, since we do not have such a vehicle now. As it happens, for this scenario NASA is doing work, and around the end of September a space vehicle weighing 550 kg will slam into an asteroid called Dimorphos. This is part of a double asteroid system, and we will be able to follow the effect of the impact in fine detail because it will alter the orbital characteristics of Dimorphos as paired with Didymos, the larger companion. The problem with something like climate change is that while technology might fix it, we are not doing the research and development needed to make it work.

Society seems to work against science, simply because people do not trust it. Over 5 million have died with Covid 19, yet we have many very active antivaxxers trying to persuade others not to be vaccinated. The interesting question is why? It is one thing to refuse to be vaccinated yourself, but why impose these views on others?  In their effort το persuade others they spread completely stupid stories. Recall the story that Bill Gates was inserting nano-trackers into the vaccine so he could know what everyone was doing? There are also stories with an element of truth but with no comprehension of relevance. Like our 98.8% above, they focus on the 0.2%. There is a tiny segment of the populations that respond adversely to certain vaccines. The medical profession knows this, and can look out for them and treat them properly if such an event occurs. These stories totally ignore what would happen to these far more sensitive people if the virus struck them. Finally, there is a tendency for navel-gazing. Consider our experiment on Dimorphos. There is a view, “What right have we to change the solar system?” If we took this view to the limit, we would still be hunter-gatherers and our biggest problem would be that lion in the shrubbery planning on eating us. Dimorphos is a lump of rock. It does not have feelings. It is not planning its future. The allied question, do your sensitivities about the Universe and the pristine nature of rocks in it give you the right to prevent the killing of billions of innocent people who do not share your view?

Did a Galactic-Scale Collision Lead to Us?

Why do we have a planet that we can walk around on, and generally mess up? As most of us know, the atoms we use, apart from hydrogen, will have originated in a nova or supernova, and some of the planet possibly even from collisions of neutron stars. These powerful events send clouds of dust into gas clouds, but then what? We call it dust, but the particle size is mainly like smoke. Telescopes like the Hubble space telescope have photographed huge clouds of gas and dust in space. These can be quite large, thus the Orion molecular cloud complex is hundreds of light years across. These giant clouds can sit there and do very little, or then start forming stars. The question then is, what starts it? The hydrogen and helium, which are by far the predominant components, with hydrogen masses about ten thousand times as much as anything else except helium, are always colliding with each other, and with dust molecules, but they always bounce back because there is no way to lose their kinetic energy. The gas has been around for 13.6 billion years, so why does it collapse suddenly?

To make things slightly more complicated, the cloud does not collapse on itself. Rather, sections collapse to form stars. The section that formed our solar system would probably have been a few thousand astronomical units across (an astronomical unit, AU, is the distance between Earth and the Sun), and this is a trivial fraction of such giant clouds. So what happens is sections collapse, leaving the cloud with “holes”, a little like a Swiss cheese.

For us, about 4.6 billion years ago such a piece of a gigantic gas cloud started to collapse upon itself, which eventually led to the formation of the solar system, and us. Perhaps we should thank whatever caused that collapse. A common explanation is that a nearby supernova sent a shockwave through the gas, and that may well be correct for a specific situation, but there is another source of disruption: galactic collisions. We have observed these elsewhere, and invariably such collisions lead to a good generation of stars. Major galaxies do not collide that often because they are so far away from each other. As an example, in about five billion years, Andromeda will collide with the Milky Way. That may well initiate a lot of formation of new stars as long as there is plenty of gas and dust clouds left.

However, there are some galactic collisions that are a bit more frequent. There is something called the Sagittarius Dwarf Spheroidal Galaxy which is approximately a tenth the diameter of the Milky Way. It comprises four main globular clusters and is spiralling around our galaxy on a polar orbit about 50,000 light years from the galactic core and passes through the plane of the Milky Way periodically. It apparently did this about five to six billion years ago, then about two billion years ago, and one billion years ago. Coupled with that, a team of astronomers have argued that star formation in the Milky Way peaked at around 5.7, 1.9 and 1 billion years ago. The argument appears to be that such star formation arose about the same time that the dwarf galaxy passed through the Milky Way. In this context, some of our nearest stars fit ths hypothesis. Thus Tau Ceti, EZ Aquarii,  and Alpha Centauri A and B are about 5.8 billion years old, Procyon is about 1.7 billion years old, while Epsilon Eridani is about 900 million years old.

However, if we look at other local stars, we find Earth, Lacaille 9352 and Proxima Centauri are about 4.5 billion years old, Epsilon Indi is about 1.3 years old, Alpha Ophiuchi A is about 750 million years old, Sirius is about 230 million years old, and Wolf 359 is between 100 – 300 million years old. Of course, a galaxy passing through another galaxy will consume a lot of time, so it is not clear what to make of this. There is always a temptation to correlate and assume causation, and that is unsound. On the other hand, the more massive Milky Way may have stripped some gas from the smaller galaxy, and a wave of gas and dust on a different orbit could have long term effects.

In case you think the stars in a galaxy are on well-behaved orbits around the centre, that is wrong. Because the galaxy formed from the collision and absorption of smaller galaxies the motion is actually quite chaotic, but because stars are so far apart by and large they ignore each other. Thus Kapteyn’s Star orbits the galactic centre and is quite close to our Sun, except it is going in the opposite direction. We “meet again” on the other side of the galaxy in about 120 million years. So to summarize, we still don’t know what caused this solar system to form but we should be thankful that we got what we did. Our system happens to be just about right for our life to form, but as you will see, when it comes out, from the second edition of my ebook “Planetary Formation and Biogenesis” there are a lot of things that could have gone wrong. Let’s not help more things to go wrong.

What Happens Inside Ice Giants?

Uranus and Neptune are a bit weird, although in fairness that may be because we don’t really know much about them. Our information is restricted to what we can see in telescopes (not a lot) and the Voyager fly-bys, which, of course, also devoted a lot of attention to the Moons, since a lot of effort was devoted to images. The planets are rather large featureless balls of gas and cloud and you can only do so much on a “zoom-past”. One of the odd things is the magnetic fields. On Earth, the magnetic field axis corresponds with the axis of rotation, more or less, but not so much there. Earth’s magnetic field is believed to be due to a molten iron core, but that could not occur there. That probably needs explaining. The iron in the dust that is accreted to form planets is a fine powder; the particles are in the micron size. The Earth’s core arises because the iron formed lumps, melted, and flowed to the core because it is denser. In my ebook “Planetary Formation and Biogenesis” I argue that the iron actually formed lumps in the accretion disk. While the star was accreting, the region around where Earth is reached something like 1600 degrees C, above the melting point of iron, so it formed globs. We see the residues of that in the iron-cored meteorites that sometimes fall to Earth. However, Mars does not appear to have an iron core. Within that model, the explanation is simple. While on Earth the large lumps of iron flowed towards the centre, on Mars, since the disk temperature falls off with distance from the star, at 1.5 AU the large lumps did not form. As a consequence, the fine iron particles could not move through the highly viscous silicates, and instead reacted with water and oxidised, or, if you prefer, rusted.

If the lumps that formed for Earth could not form at Mars because it was too far away from the star, the situation was worse for Uranus. As with Mars, the iron would be accreted as a fine dust and as the ice giants started to warm up from gravitational collapse, the iron, once it got to about 500 degrees Centigrade, would rapidly react with the water and oxidise to form iron oxides and hydrogen. Why did that not happen in the accretion disk? Maybe it did, and maybe at Mars it was always accreted as iron oxides, but by the time it got to where Earth is, there would be at least ten thousand times more hydrogen than iron, and hot hydrogen reduces iron oxide to iron. Anyway, Uranus and Neptune will not have an iron core, so what could generate the magnetic fields? Basically, you need moving electric charge. The planets are moving (rotating) so where does the charge come from?

The answer recently proposed is superionic ice. You will think that ice melts at 0 degrees Centigrade, and yes, it does, but only at atmospheric pressure. Increase the pressure and it melts at a lower temperature, which is how you make snowballs. But ice is weird. You may think ice is ice, but that is not exactly correct. There appear to be about twenty ices possible from water, although there are controversial aspects because high pressure work is very difficult and while you get information, it is not always clear about what it refers to. You may think that irrespective of that, ice will be liquid at the centre of these planets because it will be too hot for a solid. Maybe.

In a recent publication (Nature Physics, 17, 1233-1238 November 2021) authors studied ice in a diamond anvil cell at pressures up to 150 GPa (which is about 1.5 million times greater than our atmospheric pressure) and about 6,500 degrees K (near enough to Centigrade at this temperature). They interpret their observations as there being superionic ice there. The use of “about” is because there will be uncertainty due to the laser heating, and the relatively short times up there. (Recall diamond will also melt.)

A superionic ice is proposed wherein because of the pressure, the hydrogen nuclei can move about the lattice of oxygen atoms, and they are the cause of the electrical conduction. These conditions are what are expected deep in the interior but not at the centre of these two planets. There will presumably be zones where there is an equilibrium between the ice and liquid, and convection of the liquid coupled with the rotation will generate the movement of charge necessary to make the magnetism. At least, that is one theory. It may or may not be correct.

Your Water Came from Where?

One interesting question when considering why Earth has life is from where did we get our water? This is important because essentially it is the difference between Earth and Venus. Both are rocky planets of about the same size. They each have similar amounts of carbon dioxide, with Venus having about 50% more than Earth, and four times the amount of nitrogen, but Venus is extremely short of water. If we are interested in knowing about whether there is life on other planets elsewhere in the cosmos, we need to know about this water issue. The reason Venus is hell and Earth is not is not that Venus is closer to the Sun (although that would make Venus warmer than Earth) but rather it has no water. What happened on Earth is that the water dissolved the CO2 to make carbonic acid, which in turn weathered rocks to make the huge deposits of lime, dolomite, etc that we have on the planet, and to make the bicarbonates in the sea.

One of the more interesting scientific papers has just appeared in Nature Astronomy (https://doi.org/10.1038/s41550-021-01487-w) although the reason I find it interesting may not meet with the approval of the authors. What the authors did was to examine a grain of the dust retrieved from the asteroid Itokawa by the Japanese Space agency and “found it had water on its surface”. Note it had not evaporated after millions of years in a vacuum. The water is produced, so they say, by space weathering. What happens is that the sun sends out bursts of solar wind which contains high velocity protons. Space dust is made of silicates, which involve silica bound to four oxygen atoms in a tetrahedron, and each oxygen atom is bound to something else. Suppose, for sake of argument, the something else is a magnesium atom. A high energy hydrogen nucleus (a proton) strikes it and makes SiOH and, say Mg+, with the Mg ion and the silicon atom remaining bound to whatever else they were bound to. It is fairly standard chemistry that 2SiOH → SiOSi plus H2O, so we have made water. Maybe, because the difference between SiOH on a microscopic sample of dust and dust plus water is rather small, except, of course, Si-OH is chemically bound to and is part of the rock, and rock does not evaporate. However, the alleged “clincher”: the ratio of deuterium to hydrogen on this dust grain was the same as Earth’s water.

Earth’s water has about 5 times more deuterium than solar hydrogen, Venus about a hundred times. The enhancement arises because if anything is to break the bond in H-O-D, the hydrogen is slightly more probable to go because the deuterium has a slightly stronger bond to the oxygen. Also, being slightly heavier, H-O-D is slightly less likely to get to the top of the atmosphere.

So, a light bulb moment: Earth’s water came from space dust. They calculate that this would produce twenty litres of water for every cubic meter of rock. This dust is wet! If that dust rained down on Earth it would deliver a lot of water. The authors suggest about half the water here came that way, while the rest came from carbonaceous chondrites, which have the same D/H ratio.

So, notice anything? There are two problems when forming a theory. First, the theory should account for everything of relevance. In practice this might be a little much, but there should be no obvious problems. Second, the theory should have no obvious inconsistencies. First, let us look at the “everything”. If the dust rained down on the Earth, why did not the same amount rain down on Venus? There is a slight weakness in this argument because if it did, maybe the water was largely destroyed by the sunlight. If that happened a high D/H ratio would result, and that is found on Venus. However, if you accept that, why did Earth’s water not also have its D/H ratio increased? The simplest explanation would be that it did, but not to extent of Venus because Earth had more water to dilute it. Why did the dust not rain down on the Moon? If the answer is the dust had been blown away by the time the Moon was formed, that makes sense, except now we are asking the water to be delivered at the time of accretion, and the evidence on Mars was that water was not there until about 500 million years later. If it arrived before the disk dust was lost, then the strongest supply of water would come closest to the star, and by the time we got to Earth, it would be screened by inner dust. Venus would be the wettest and it isn’t.

Now the inconsistencies. The strongest flux of solar wind at this distance would be what bombards the Moon, and while the dust was only here for a few million years, the Moon has been there for 4.5 billion years. Plenty of time to get wet. Except it has not. The surface of the dust on the Moon shows this reaction, and there are signs of water on the Moon, especially in the more polar regions, and the average Moon rock has got some water. But the problem is these solar winds only hit the surface. Thus the top layer or so of atoms might react, but nothing inside that layer. We can see those SiOH bonds with infrared spectroscopy, but the Moon, while it has some such molecules, it cannot be described as wet. My view is this is another one of those publications where people have got carried away, more intent on getting a paper that gets cited for their CV than actually stopping and thinking about a problem.

Interstellar Travel Opportunities.

As you may have heard, stars move. The only reason we cannot see this is because they are so far away, and it takes so long to make a difference. Currently, the closest star to us is Proxima Centauri, which is part of the Alpha Centauri grouping. It is 4.2 light years away, and if you think that is attractive for an interstellar voyage, just wait a bit. In 28,700 years it will be a whole light year closer. That is a clear saving in travelling time, especially if you do not travel close to light speed.

However, there have been closer encounters. Sholz’s star, which is a binary; a squib of a red dwarf plus a brown dwarf, came within 0.82 light years 78,000 years ago. Our stone age ancestors would probably have been unaware of it, because it is so dim that even when that close it was still a hundred times too dim to be seen by the naked eye. There is one possible exception to that: occasionally red dwarfs periodically emit extremely bright flares, so maybe they would see a star appear from nowhere, then gradually disappear. Such an event might go down in their stories, particularly if something dramatic happened. There is one further possible downside for our ancestors: although it is unclear whether such a squib of a star was big enough, it might have exerted a gravitational effect on the Oort cloud, thus generating a flux of comets coming inwards. That might have been the dramatic event.

That star was too small to do anything to disrupt our solar system, but it is possible that much closer encounters in other solar systems could cause all sorts of chaos, including stealing a planet, or having one stolen. They could certainly disrupt a solar system, and it is possible that some of the so-called star-burning giants were formed in the expected places and were dislodged inwards by such a star. That happens when the dislodged entity has a very elliptical orbit that takes it closer to the star where tidal effects with the star circularise it. That did not happen in our solar system. Of course, it does not take a passing star to do that; if the planets get too big and too close their gravity can do it.

It is possible that a modestly close encounter with a star did have an effect on the outer Kuiper Belt, where objects like Eris seem to be obvious Kuiper Belt Objects, but they are rather far out and have very elliptical orbits. It would be expected that would arise from one or more significant gravitational interactions.

The question then is, if a star passed closely should people take advantage and colonise the new system? Alternatively, would life forms there have the same idea if they were technically advanced? Since if you had the technology to do this, presumably you would also have the technology to know what was there. It is not as if you do not get warning. For example, if you are around in 1.4 million years, Gliese 710 will pass within 10,000 AU of the sun, well within the so-called Oort Cloud. Gliese 710 is about 60% the mass of the sun, which means its gravity could really stir up the comets in the Oort cloud, and our star will do exactly the same for the corresponding cloud of comets in their system. In a really close encounter it is not within the bounds of possibility that planetary bodies could be exchanged. If they were, the exchange would almost certainly lead to a very elliptical orbit, and probably at a great distance. You may have heard of the possibility of a “Planet 9” that is at a considerable distance but with an elliptical orbit has caused highly elliptical orbits in some trans Neptunian objects. Either the planet, if it exists at all, or the elliptical nature of the orbits of bodies like Sedna, could well have arisen from a previous close stellar encounter.

As far as I know, we have not detected planets around this star. That does not mean there are not any because if we do not lie on the equatorial plane of that star we would not see much from eclipsing observations (and remember Kepler only looks at a very small section of the sky, and Gliese 710 is not in the original area examined) and at that distance, any astronomer with our technology there would not see us. Which raises the question, if there were planets there, would we want to swap systems? If you accept the mechanism of how planets form in my ebook “Planetary Formation and Biogenesis”, and if the rates of accretion, after adjusting for stellar mass for both were the same, then any rocky planet in the habitable zone is likely to be the Mars equivalent. It would be much warmer and it may well be much bigger than our Mars, but it would not have plate tectonics because its composition would not permit eclogite to form, which is necessary for pull subduction. With that knowledge, would you go?