Book Discounts and Video

From November 8 – 15, two ebooks will be 99c or 99p. These are:

Scaevola’s Triumph

The bizarre prophecy has worked, and Scaevola finds himself on an alien planet that is technically so advanced they consider him a primitive, yet it is losing a war. According to Pallas Athene, only he can save this civilization from extermination, and his use of strategy is needed to win this war. But what can he do, when at first he cannot even open the door to his apartment?  Book III of a series.

The Manganese Dilemma

Charles Burrowes, master hacker, is thrown into a ‘black op’ with the curvaceous Svetlana for company to validate new super stealth technology she has brought to the West. Can Burrowes provide what the CIA needs before Russian counterintelligence or a local criminal conspiracy blow the whole operation out of the water?

Finally, for those who what to know what I look like:

A link to Red Gold:


Discount on Ebook

Discounted to 99c/99p from Oct 11 – 18: Legionis Legatus. Second in a series wherein Scaevola, on the verge of abandoning Athene’s quest, suddenly finds more of the prophecy coming true: Caligulae gives him the command of a legion; he suddenly sees why Aristotle was wrong when he proved the Earth could not go around the sun; and while doing so, he ignores the most beautiful woman he has seen, one of the only two prophesied to be in his life. Scaevola must recover from ignoring she who could be his wife, help thwart the Scribonianus coup against Claudius, and command legion XX Valeria for the invasion of Britain. A historical novel that also includes the answer to the scientific puzzle in Athene’s Prophecy: how to show why the earth has to go around the sun with the knowledge available at the time.

Have you got what it takes to form a scientific theory?

Making a scientific theory is actually more difficult than you might think. The first step involves surveying what knowledge is already available. That comes in two subsets: the actual observational data and the interpretation of what everyone thinks that set of data means. I happen to think that set theory is a great start here. A set is a collection of data with something in common, together with the rule that suggests it should be put into one set, as opposed to several. That rule must arise naturally from any theory, so as you form a rule, you are well on your way to forming a theory. The next part is probably the hardest: you have to decide what interpretation that is allegedly established is in fact wrong. It is not that easy to say that the authority is wrong, and your idea is right, but you have to do that, and at the same time know that your version is in accord with all observational data and takes you somewhere else. Why I am going on about this now is I have written two novels that set a problem: how could you prove the Earth goes around the sun if you were an ancient Roman? This is a challenge if you want to test yourself as a theoretician. If you don’t. I like to think there is still an interesting story there.

From September 13 – 20, my novel Athene’s Prophecy will be discounted in the US and UK, and this blog will give some background information to make the reading easier as regards the actual story not regarding this problem. In this, my fictional character, Gaius Claudius Scaevola is on a quest, but he must also survive the imperium of a certain Gaius Julius Caesar, aka Caligulae, who suffered from “fake news”, and a bad subsequent press. First the nickname: no Roman would call him Caligula because even his worst enemies would recognize he had two feet, and his father could easily afford two bootlets. Romans had a number of names, but they tended to be similar. Take Gaius Julius Caesar. There were many of them, including the father, grandfather, great grandfather etc. of the one you recognize. Caligulae was also Gaius Julius Caesar. Gaius is a praenomen, like John. Unfortunately, there were not a lot of such names so there are many called Gaius. Julius is the ancient family name, but it is more like a clan, and eventually there needed to be more, so most of the popular clans had a cognomen. This tended to be anything but grandiose. Thus for Marcus Tullius Cicero, Cicero means chickpea. Scaevola means “lefty”. It is less clear what Caesar means because in Latin the “ar” ending is somewhat unusual. Gaius Plinius Secundus interpreted it as coming from caesaries, which means “hairy”. Ironically, the most famous Julius Caesar was bald. Incidentally, in pronunciation, the latin “C” is the equivalent of the Greek gamma, so it is pronounced as a “G” or “K” – the difference is small and we have now way of knowing. “ae” is pronounced as in “pie”. So Caesar is pronounced something like the German Kaiser.

Caligulae is widely regarded as a tyrant of the worst kind, but during his imperium he was only personally responsible for thirteen executions, and he had three failed coup attempts on his life, the leaders of which contributed to that thirteen. That does not sound excessively tyrannical. However, he did have the bad habit of making outrageous comments (this is prior to a certain President tweeting, but there are strange similarities). He made his horse a senator. That was not mad; it was a clear insult to the senators.

He is accused of making a fatuous invasion of Germany. Actually, the evidence is he got two rebellious legions to build bridges over the Rhine, go over, set up camp, dig lots of earthworks, march around and return. This is actually a text-book account of imposing discipline and carrying out an exercise, following the methods of his brother-in-law Gnaeus Domitius Corbulo, one of the stronger Roman Generals on discipline. He then took these same two legions and ordered them to invade Britain. The men refused to board what are sometimes called decrepit ships. Whatever, Caligulae gave them the choices between “conquering Neptune” and collecting a mass of sea shells, invading Britain, or face decimation. They collected sea shells. The exercise was not madness: it was a total humiliation for the two legions to have to carry these through Rome in the form of a “triumph”. This rather odd behaviour ended legionary rebellion, but it did not stop the coups. The odd behaviour and the fact he despised many senators inevitably led to bad press because it was the senatorial class that wrote histories, but like a certain president, he seemed to go out of his way to encourage the bad press. However, he was not seen as a tyrant by the masses. When he died the masses gave a genuine outpouring of anger at those who killed him. Like the more famous Gaius Julius Caesar, Caligulae had great support from the masses, but not from the senators. I have collected many of his most notorious acts, and one of the most bizarre political incidents I have heard of is quoted in the novel more or less as reported by Philo of Alexandria, with only minor changes for style consistency, and, of course, to report it in English.

As for showing how scientific theory can be developed, in TV shows you find scientists sitting down doing very difficult mathematics, and while that may be needed when theory is applied, all major theories start with relatively simple concepts. If we take quantum mechanics as an example of a reasonably difficult piece of theoretical physics, thus to get to the famous Schrödinger equation, start with the Hamilton-Jacobi equation from classical physics. Now the mathematician Hamilton had already shown you can manipulated that into a wave-like equation, but that went nowhere useful. However, the French physicist de Broglie had argued that there was real wave-like behaviour, and he came up with an equation in which the classical action (momentum times distance in this case) for a wave length was constant, specifically in units of h (Planck’s quantum of action). All that Schrödinger had to do was to manipulate Hamilton’s waves and ensure that the action came in units of h per wavelength. That may seem easy, but everything was present for some time before Schrödinger put that together. Coming up with an original concept is not at all easy.

Anyway, in the novel, Scaevola has to prove the Earth goes around the sun, with what was available then. (No telescopes that helped Galileo.) The novel gives you the material avaiable, including the theory and measurements of Aristarchus. See if you can do it. You, at least, have the advantage you know it does. (And no, you do not have to invent calculus or Newtonian mechanics.)

The above is, of course, merely the background. The main part of the story involves life in Egypt, the aanti-Jewish riots in Egypt, then the religious problems of Judea as Christianty starts.

Ebook discount

Discounted to 99c/99p from August 9 – 16: Jonathon Munros, book 3 of the First Contact trilogy. Jonathon Munro, a truly evil man, was to be removed from society and an android is made to substitute for him. The android has to study what Jonathon did, so he could act like him. When the android learned to self-replicate, what could possibly go right? A story of corruption, revenge, greed for power, and sentient machines in a dystopian future.

Was there an Initial Atmosphere from Accretion?

One of the problems with modern science is that once a paradigm has been selected, a layer of “authorities” is set up, and unless the scientist adopts the paradigm, little notice is taken of him or her. This is where conferences become important, because there is an audience that is more or less required to listen. The problem then for the person who has a different view is to show why that view is important enough to be considered. The barrier is rightly high. A new theory MUST do something the old one did not do, and it must not be contradicted by known facts. As I said, a high barrier.

In the previous post, I argued that the chemicals required for life did not come from carbonaceous chondrites or comets, and that is against standard thought. Part of the reason this view is held is that the gases had to come from somewhere, so from where? There are two obvious possible answers. The first is the gases were accreted with the planet as an atmosphere. In this hypothesis, the Earth formed while the disk gases were still there and simple gravity held them. Once the accretion disk was removed by the star, the hydrogen and helium were lost to space because Earth’s gravity was not strong enough, but other gases were retained. This possibility is usually rejected, and in this case the rejection is sound.

The first part of the proposition was almost certainly correct. Gases would have been accreted from the stellar disk, even on rocky planets, and these gases were largely hydrogen and helium. The next part is also correct. Once the disk gases were removed, that hydrogen and helium would be lost to space because Earth’s gravity was not strong enough to hold it. However, the question then is, how was it lost? As it happens, insufficient gravity was not the primary cause, and the loss was much faster than simply seeping off into space. Early in the life of a new star there are vicious solar winds and extreme UV radiation. It is generally accepted that such radiation would boil off the hydrogen and helium, and these would be lost so quickly that the other gases would be removed by hydrodynamic drag, and only some of the very heavier gases, such as krypton and xenon could remain. There is evidence to support this proposal, in that for krypton and xenon higher levels of heavier isotopes are observed. This would happen if most of these gases were removed from the top of the atmosphere, and since the lighter isotopes would preferentially find their way there, they would be removed preferentially. Since this is not observed for neon or argon isotopes, the argument is that all neon and argon in the atmosphere was lost this way, and if so, all nitrogen and carbon oxides, together with all water in the atmosphere would be lost. Basically, apart from the amount of krypton and xenon currently in the atmosphere, there would be no other gases. The standard theory of planetary formation has it that the Earth was a ball of magma, and if so, all water on the surface would be in the gas phase, so for quite some time Earth would be a dry lump of rock with an atmosphere that had a pressure that would be so low only the best vacuum pumps today could match it.

There could be the objection that maybe the star was not that active and we did retain some gases. After all, we weren’t around to check. Can you see why not? I’ll give the reason shortly. However, if we accept that the gases could not have come from the accretion disk, the other alternative is they came from below the ground, i.e. they were emitted by volacanic activity. How does that stand up?

One possibility might be that gases, including water, were adsorbed on the dust, then subsequently emitted by volcanoes. You might protest that if the Earth was a magma ocean, all that water would be immediately ejected from the silicates as a gas, but it turns out that while water is insoluble in silica at surface pressures, at pressures of 5000 atmospheres, granitic magma can dissolve up to 10% water at 1100 degrees C, at least according to Wikipedia. Irrespective of the accuracy of the figures, high temperature silicates under pressure most certainly dissolve water, and it probably hydrolyses the silicate structure and makes it far less viscous. It has been estimated that the water remaining in the mantle is 100 times greater than the current oceans so there is no problem in expecting that the oceans were initially emitted by volcanic activity. As an aside, deep in the mantle the pressures are far greater than 5000 atmospheres. This water is also likely to be very important for another reason, namely reducing the viscosity and lowering the magma density. This assists pull subduction, where the dry, or drier, basalt from the surface is denser than the other material around it and hence descends into the mantle. If the water were not there, we would not have plate tectonics, and if there were no plate tectonics, there would be no recycling of carbon dioxide, so eventually all the carbon dioxide on the surface would be converted to lime and there would be nothing for plants to use. End of life!

However, we know that our atmospheric gases were not primarily adsorbed as dust. How do we know that? In the accretion disk the number of nitrogen atoms is roughly the same as the number of neon atoms, and their heats of adsorption on dust are roughly the same. The only plausible physical means of separating them in the accretion disk is selective sublimation from ice, but ice simply could not survive where Earth formed. So, if our nitrogen came from the disk by simple physical means, then we would have roughly the same amount of neon in our atmosphere as nitrogen. We don’t, and the amount of neon we have is a measure of the amount of gas we have from such adsorption. Neon is present at 0.0018%, which is not very much.

So, in answer to the initial question, for a period there was effectively no atmosphere. To go any further we have to consider how the planets formed, and as some may suspect, I do not accept the standard theory for reasons that will become apparent in the next post.

Meanwhile, may I remind readers that my ebooks on Smashwords are on discount through July. Links to novels:


‘Bot War:


Meanwhile, if you want to know scientifically about biofuels:


The Strange Case of Arkady Babchenko

They say truth is stranger than fiction, and I must say, I cannot conceive of any reasonable fiction writer coming up with a plot that included these rather bizarre events.

The first reports I heard were on the radio, where it was announced that the Russian journalist Arkady Babchenko, who had been a strong critic of Vladimir Putin and who had fled to Ukraine a year previously, had been shot in the back on a Kiev street, and had died on the way to hospital. There were strong protests from Ukraine and a number of other countries at the Russians for using murder as an act of revenge. The Kremlin denied any involvement. Of course, they would, wouldn’t they? My first thought was, since Ukraine is a bit anarchic, maybe we had better wait for more information. The next morning’s paper gave more details, and it looked bad. The story now changed to this murder had been pulled off outside their apartment, and his wife had phoned for the ambulance.

But the morning radio news had an even more bizarre twist. The Ukrainian police had given a press conference, and in the middle of it, in walked Arkady Babchenko. Yes, Putin was definitely innocent of his murder. It turned out the whole episode had been staged, which left open the question, why? The official statement was Arkady had had threats, and this was staged to “flush out the perpetrators” who were alleged to be Russian Intelligence. Even Arkady’s wife did not know this stunt had been pulled. My thought at the time was, he may not be dead yet, but when he gets home . . . But wait – his wife phoned for the ambulance?? A little short on self-consistency here. Well, there is worse to come.

Let’s think about this for a moment. You have been instructed to murder Arkady, then you hear on the news that he has been murdered? What do you do? Get flushed out? Or sit back and say to yourself, “Well, that was easy,” and have a glass or two of whatever beverage take your fancy? Even the highly suspicious agent (and note, this is Ukraine) might like to check out that there is indeed a funeral and see how sad the mourners are, but whatever, they are not going to jump up and down and be “flushed out.”

It seems these thoughts finally struck the Ukrainian authorities so the story changed. Now a hit-man had been hired and instead of doing it, he went to the police, and the Ukrainian intelligence services staged it so it looked as if it had been done, so the man who hired him would have to identify himself when he paid for the hit. The next question is, if so, why not wait a bit and let him identify himself. However, no need, because a day later, we knew who he was. The hit-man was an ultra-right wing priest who was known to be violently anti-Russian, and who liked to dress in military attire and take part in “exercises”. The man who hired him was Boris L. Herman, and he was alleged to have a list of some thirty others Moscow allegedly wanted eliminated. He is supposedly in custody for two months. Herman then claimed he hired the priest to kill Babchenko at the request of Ukrainian counterintelligence. Ukrainian counterintelligence denied this. Herman is reported as claiming that he hired the priest, on the basis that the priest would go straight to the SBU, Ukraine’s security service.

The SBU has conceded that he priest told them about this and they collaborated, but denied the matter had anything to do with Ukraine’s counterintelligence operations. That is like saying, “We did it, but it wasn’t us.” It then turns out that Herman is

the only private enterprise arms manufacturer in Ukraine, and was similarly right wing. Is this some sort of oligarch shakedown? They get his company and he lives if he cooperates? Whatever, who can believe anything out of Ukraine these days.

Meanwhile, a small commercial break. My ebook “Dreams Defiled”, the second in the first contact trilogy is 99c/99p from 7th – 14th. A story of a person gradually descending into being thoroughly evil, and the havoc he causes to everyone else. Also, why Mars can never be terraformed to be like Earth, and a different form of government.

Colonizing Mars

Recently, Elon Musk threw a Tesla car at Mars and somewhat carelessly, missed. How can you miss a planet? The answer is, not unsurprisingly, quite easily. Mars might be a planet, and planets might seem large, but they are staggeringly small compared with the solar system. But whatever else this achieved, it did draw attention back to thoughts of humans on Mars, and as an exercise, it is not simple to bring the two together. Stephen Hawking was keen on establishing a colony there, mainly as some sort of reserve for humanity in case we did something stupid with out own planet. Would we do that? Unfortunately, the answer is depressingly quite possibly.

So what is required to get to Mars? First, not missing. NASA has shown that it can do this, so in principle this problem is solved. The second requirement is to arrive at the surface at essentially zero vertical velocity, and NASA has not been quite so successful at that, nevertheless, we can assume that landing will be with a piloted shuttle, so this should be able to be done. So far, so good? Well, not quite, because when you get there you have to have enough “stuff” to ensure you can survive. If it is a scientific exploration, the people will be away for over two years, so at a minimum, they will need groceries for two years, unless they grow their own food. They will need their own oxygen and water unless they can recycle it. They will need some means of getting around or there is no point in going, and they will need some sort of habitat. If they are settlers they will need a lot more because they are not coming back.

The obvious first thing to for settlers to do is to have somewhere to live. We can assume that the ship that brought them will provide a temporary place, although if the ship is to be recycled back to earth and they came down in a shuttle, this is a priority. At the same time they must build facilities to grow their own food and make oxygen. This raises the question, how many people could actually grow food and guarantee to do it well enough not to starve in a totally different environment to here? I am not sure you can train for that, but even if you can, there will still need to be a lot of food taken as well as oxygen. However, let’s assume these settlers are really competent and they are raring to get on with it.

The first requirement would be enough area to do it, so they would need a giant glass house (or houses). That means glass, and metal to hold it, but there is worse. You have to pressurize it, because the Martian atmospheric pressure on average is only about ½% of Earth’s. That means you need a strong pump, but because of the aggressive nature of dust in the atmosphere much of the time, you need some form of filter. The air is about 95.3% carbon dioxide, about 2.7% nitrogen and 1.6% argon. If you want to recover the oxygen to breathe, you want to boost the nitrogen so that what is produced is breathable as air, and that requires a major gas separator. The best way is probably to seriously overpressurise it, so the carbon dioxide comes out as a liquid, and keep the rest. However, there is another problem: you need water, so that equipment will probably have to be made even more complicated so the water in the atmosphere can be recovered. The next problem is that if the glasshouse is to be pressurized, it has to be leak-proof. All the joints have to be sealed with something that will not decay under UV radiation, and worse than that, a deep footer is needed around the glasshouse. That means digging a deep trench, pouring concrete, and sealing the walls. Finally, the whole regolith inside the glasshouse has to be treated to decompose its strong oxidizing nature (but this does produce a small amount of oxygen) otherwise the soil will sterilize anything you plant, then you have to add some actual soil. Many of these operations would be best done mechanically, but they each need their own machine.

You may notice that all of these things costs weight, and that is not what is wanted on a space ship. So the question is, how much can be brought there? There is a second requirement. Every time you use a machine, you need fuel. That has to be electric, which means either batteries, which so far would require huge numbers to keep going all day, or fuel cells, but if fuel cells are selected, what will be the fuel? Note that two fuels are required; one to “burn” and the other to burn it in, as there is no oxygen in the atmosphere worth having. Either way, a serious energy producer is required because not only do you have to power things, but you have to keep your glasshouse warm. The night-time temperatures can drop below minus 100 degrees Centigrade. The most obvious source is nuclear, either fission or fusion, but that requires shielding and even more weight.

The above is just some of the issues. I wrote a novel (Red Gold) that involved Martian settlement. The weight of the two ships was twenty million tonne each, and each had a thermonuclear propulsion system that detached and could be used as power plants and mineral separation units later. The idea was that construction materials would be made there, but even if that is done, a huge amount of stuff has to be taken. Think of the cost of lifting forty million tonne of stuff from Earth into orbit alone. Why two ships? Because everything should be done in duplicate, in case something goes wrong. Why that much stuff? Because you want this not to be some horrible exercise in survival.

At this stage I shall insert a small commercial. Red Gold is a story of such colonization, and of fraud, and it includes a lot more about what it might take to colonize Mars. It is available on Kindle Countdown discounts from 13 – 19 April. (