The Sociodynamics of Science

The title is a bit of an exaggeration as to the importance of this post, nevertheless since I was at what was probably my last scientific conference (NZ Institute of Chemistry, at Christchurch) I could not resist looking around at behaviour as well as the science. I also gave two presentations. Speaking to an audience gives the speaker an opportunity to order the presentation so as to give the most force to the surprising parts of it, not that many took advantage of this. Overall, very few, if any (apart from yours truly) seemed to want to provide their audience with something that might be uncomfortable for their preconceived notions.

First, the general part provided great support for Thomas Kuhn’s analysis. I found most of the invited speakers and keynote speakers to illustrate an interesting aspect: why are they speaking? Very few actually wished to educate or convince anyone of anything in particular, and personally, I found the few that did to be by far the most interesting. Most of the presentations from academics could be summarised as, “I have a huge number of research students and here is what they have done.” What then followed was a very large amount of results, but there was seldom an interesting unifying principle. Chemistry tends to be susceptible to this, as a very common student research program is to try to make a variety of related compounds. This may well have been very useful, but if we do not see why this approach was taken, it tends to feel like filling up some compendium of compounds, or, as Rutherford put it rather acidly, “stamp collecting”. These types of talks are characterised by the speaker trying to get in as many compounds as they can, so they keep talking and use up the allocated question time. I suspect that one of the purposes of these presentations is to say, “Look at what we have done. This has given our graduate students a good number of scientific publications, so if you are thinking of being a grad student, why not come here?” I can readily understand that line of thinking, but its relevance for older scientists is questionable. There were a few presentations where the output would be of more general interest, though. I found the odd presentation that showed how to do something new, where it could have quite wide applications, to be of particular interest.

Now to the personal. My first presentation was a summary of my biogenesis approach. It may have had too much information across too wide a field, but the interesting point was that it generated a discussion at the end relating to my concept of how homochirality was generated. My argument is that reproduction depends on it because the geometry prevents the formation of a second strand if the first strand is not either entirely left-handed or right-handed in its pitch. So the issue then was, it was pure chance that D-ribose containing helices predominated, in part because the chance of getting a long-enough homochiral strand is very remote, and when one arises, then it takes up all the resources and predominates. The legitimate question then is, why doesn’t the other handed helix eventually arise? It may be slower to do so, but it is not necessarily impossible. My partial answer to that is the mer units are also used to bind to some other important units for life to give them solubility, and the wrong sort gets used up and does not build up concentration. Maybe that is so, but there is no evidence.

It was my second presentation that would be controversial, and it was interesting to watch the expressions. Part of the problem for me was it was the last such presentation (there were some closing speakers after me, and after morning tea) and there is something about conferences at the end – everyone is busy thinking about how to get to the airport, etc, so they tend to lose concentration. My first slide put up three propositions: the wave functions everyone uses for atomic orbitals are wrong; because of that, the calculation of the chemical bond requires the use of a hitherto unrecognised quantum effect (which is a very specific expression involving only universally recognised quantum numbers) and finally, the commonly held belief that relativistic effects on the inner electrons make a major effect on the valence electron of the heaviest elements is wrong. 

As you might expect, this was greeted initially with yawns and disinterest: this was going to be wrong. At least that seemed to be written over their faces. I then diverted to explain my guidance wave interpretation, which is essentially the de Broglie pilot wave concept, but with two additions: an application of Euler’s complex number theory that everyone seems to have missed, and secondly, I argued that if the wave really causes diffraction in the two-slit-type experiment, it has to travel at the same speed as the particle. These two points lead to serious simplifications in the calculation of properties of chemical bonds. The next step was to put up a lot of evidence for the different wave functions, with about 70 data points spanning a selection of atoms, of which about twenty supported the absence of any significant relativistic effect. (This does not say relativity is wrong, but merely that its effects on valence electrons are too small to be noticed at this level of analysis.) What this was effectively saying was that most of the current calculations only give agreement with observation when liberal use is made of assignable constants, which conveniently can be adjusted so you get the “right” answer.So, question time. One question surprised me: Does my new approach do anything new? I argued that the fact everyone is using the wrong wave functions, there is a quantum effect that nobody has recognised, and everyone is wrong with those relativistic effects could be considered new. Yes, but have you got a prediction? This was someone difficult to satisfy. Well, if you have access to a good physics lab, I suggested, here is where you can show that, assuming my theory is correct, make an adjustment to the delayed choice quantum eraser experiment (and I outlined the simple change) then you will reach the opposite conclusion. If you don’t agree with me, then you should do the experiment to prove I am wrong. The stunned expressions were worth the cost of going to the conference. Not that anyone will do the experiment. That would show interest in finding the truth, and in fairness, it is more a job for a physicist.

Recycling Lithium Ion Batteries

One of the biggest contributors to greenhouse warming is transport, and the solution that seems to be advocated is to switch to electric vehicles as they do not release CO2, and the usual option is to use the lithium ion battery A problem that I highlighted in a previous blog is we don’t have enough cobalt, and we run out of a lot of other things if we do not recycle. A recent review in Nature (https://doi.org/10.1038/s41586-019-1682-5)   covered recycling and the following depends on that review. The number of vehicles in the world is estimated to reach 2 billion by 2035 and if all are powered by lithium ion batteries the total pack wastes would be 500 million tonnes, and occupy a billion cubic meters. Since the batteries last about nine years, we eventually get drowned in dead batteries, unless we recycle. Also, dead lithium ion batteries are a fire hazard. 

There are two initial approaches, assuming we get the batteries cleanly out of the vehicle. One is to crush the whole and burn off the graphite, plastics, electrolyte, etc, which gives an alloy of Co, Cu, Fe and Ni, together with a slag that contains aluminium and manganese oxides, and some lithium carbonate. This loses over half the mass of the batteries and contributes to more greenhouse warming, which was what we were trying to avoid. Much of the lithium is often lost this way to, and finally, we generate a certain amount of hydrogen fluoride, a very toxic gas. The problem then is to find a use for an alloy of unknown composition. Alternatively, the alloy can be treated with chlorine, or acid, to dissolve it and get the salts of the elements.

The alternative is to disassemble the batteries, and some remaining electricity can be salvaged. It is imperative to avoid short-circuiting the pack, to prevent thermal runaway, which produces hydrofluoric acid and carcinogenic materials, while fire is a continual hazard. A further complication is that total discharge is not desirable because copper can dissolve into the electrolyte, contaminating the materials that could be recycled. There is a further problem that bedevils recycling and arises from free market economics: different manufacturers offer different batteries with different physical configurations, cell types and even different chemistries. Some cells have planar electrodes, others are tightly coiled and there are about five basic types of chemistries used. All have lithium, but additionally: cobalt oxide, iron phosphorus oxide, manganese oxide, nickel/cobalt.aluminium oxide, then there are a variety of cell manufacturers that use oxides of lithium/manganese/cobalt in various mixes. 

Disassembling starts with removing and the wiring, bus bars, and miscellaneous external electronics without short-circuiting the battery, and this gets you to the modules. These may have sealants that are difficult to remove, and then you may find the cells inside stuck together with adhesive, the components may be soldered, and we cannot guarantee zero charge. Then if you get to the cell, clean separation of the cathode, anode, and electrolyte may be difficult, we might encounter nanoparticles which provide a real health risk, the electrolyte may generate hydrogen fluoride and the actual chemistry of the cell may be unclear. The metals in principle available for recycling are cobalt, nickel, lithium, manganese and aluminium, and there is also graphite.

Suppose we try to automate? Automation requires a precisely structured environment, in which the robot makes a pre-programmed repetitive action. In principle, machine sorting would be possible if the batteries had some sort of label that would specify precisely what it was. Reading and directing to a suitable processing stream would be simple, but as yet there are no such labels, which, perforce, must be readable at end of life. It would help recycling if there were some standardised designs, but good luck trying to get that in a market economy. If you opt for manual disssembling, this is very laboour intensive and not a particularly healthy occupation.

If the various parts were separated, metal recovery can be carried out chemically, usually by treating the parts with sulphuric acid and hydrogen peroxide. The next part is to try to separate them, and how you go about that depends on what you think the mixture is. Essentially, you wish to precipitate one material and leave the others, or maybe precipitate two. Perhaps easier is to try to reform the most complex cathode by taking a mix of Ni, Mn, and Co that has been recovered as hydroxides, analysing it and making up what is deficient with new material, then heat treating to make the desired cathode material. This assumes you have physically separated the anodes and cathodes previously.

If the cathodes and anodes have been recovered, in principle they can be directly recycled to make new anodes and cathodes, however the old chemistry is retained. Cathode strips are soaked in N-methylpyrrolidine (NMP) then ultrasonicated to make the powder to be used to reformulate a cathode. Here, it is important that only one type is used, and it means new improved versions are not made. This works best when the state of the battery before recycling was good. Direct recycling is less likely to work for batteries that are old and of unknown provenance. NMP is a rather expensive solvent and somewhat toxic. Direct recycling is the most complicated process.

The real problem is costs. As we reduce the cobalt content, we reduce the value of the metals. Direct recycling may seem good, but if it results in an inferior product, who will buy it? Every step in a process incurs costs, and also produces is own waste stream, including a high level of greenhouse gases. If we accept the Nature review, 2% of the world’s cars would eventually represent a stream of waste that would encircle the planet so we have to do something, but the value of the metals in a lithium ion battery is less than 10% of the cost of the battery, and with all the toxic components, the environmental cost of such electric vehicles is far greater than people think. All the steps generate their own waste streams that have to be dealt with, and most steps would generate their own greenhouse gases. The problem with recycling is that since it usually makes products of inferior quality because of the cost of separating out all the “foreign” material, economics means that in a market economy, only a modest fraction actually gets recycled.

Where to Find Life? Not Europa

Now that we have found so many exoplanets, we might start to wonder whether they have life. It so happens I am going to give a presentation on this at a conference in about three weeks time, hence the temptation to focus attention on the topic. My argument is that whether a place could support life is irrelevant; the question is, could it get started? For the present, I am not considering panspermia, i.e. it came from somewhere else on the grounds that if it did, the necessities to reproduce still had to be present and if they were, life would probably evolve anyway. 

I consider the ability to reproduce to be critical because, from the chemistry point of view, it is the hardest to get right. One critical problem is reproduction itself is not enough; it is no use using all resources to make something that reproduces a brown sludge. It has to guess right, and the only way to do that is to make lots of guesses. The only way to do that is to tear to bits that which is a wrong guess and try again and re-use the bits. But then, when you get something useful that might eventually work, you have to keep the good bits. So reproduction and evolution have opposite requirements, but they have to go through the same entity. Reproduction requires the faithful transmission of information; evolution requires the information to change on transmission, but eventually not by much. Keep what is necessary, reject that which is bad. But how?

Information transfer requires a choice of entities to be attached to some polymer, and which can form specific links with either the same entity only (positive reproduction) or through a specific complementary entity (to make a negative copy). To be specific they have to have a strongly preferred attachment, but to separate them later, the attachment has to be able to be converted to near zero energy. This can be done with hydrogen bonds, because solvent water can make up the energy during separation. One hydrogen bond is insufficient; there are too many other things that could get in the road. Adenine forms two hydrogen bonds with uracil, guanine three with cytosine, and most importantly, guanine and uracil both have N-H bonds while adenine and cytosine have none; the wrong pairing either leads to a steric clash that pushes them apart or ends up with only one hydrogen bond that is not strong enough. Accordingly we have the condition for reliable information transfer. Further good news is these bases form themselves from ammonium cyanide, urea and cyanoacetylene, all of which are expected on an earth-like planet from my concept of planetary formation.

The next problem is to form two polymer strands that can separate in water. First, to link them something must have two links. For evolution to work, these have to be strong, but breakable under the right conditions. To separate, they need to have a solubilizing agent, which means an ionic bond. In turn, this means three functional valence electrons. Phosphate alone can do this. The next task is to link the phosphate to the bases that carries the information code. That something must also determine a fixed shape for the strands, and for this nature chose ribose. If we link adenine, ribose and phosphate at the 5 position of ribose we get adenosine monophosphate (AMP); if we do he same for uracil we get uridine monophosphate (UMP). If we put dilute solutions of AMP and UMP into vesicles (made by a long chain hydrocarbon-based surfactant) and let them lie on a flat rock in the sun and splash them from time to time with water, we end with what is effectively random “RNA” strands with over eighty units in a few hours. At this point, useful information is unlikely, but we are on the way.

Why ribose? Because the only laboratory synthesis of AMP from only the three constituents involves shining ultraviolet light on the mixture, and to me, this shows why ribose was chosen, even though ribose is one of the least likely sugars to be formed. As I see it, the reason is we have to form a phosphate ester specifically on the 5-hydroxyl. That means there has to be something unique about the 5-hydroxyl of ribose compared with all other sugar hydroxyl groups. To form such an ester, a hydroxyl has to hit the phosphate with an energy equivalent to the vibrations it would have at about 200 degrees C. Also, if any water is around at that temperature, it would immediately destroy the ester, so black smokers are out. The point about a furanose is it is a flexible molecule and when it receives energy (indirectly) from the UV light it will vibrate vigorously, and UV light has energy to spare for this task. Those vibrations will, from geometry, focus on the 5-hydroxyl. Ribose is the only sugar that has a reasonable amount of furanose; the rest are all in the rigid pyranose form. Now, an interesting point about ribose is that while it is usually only present in microscopic amounts in a non-specific sugar synthesis, it is much more common if the sugar synthesis occurs in the presence of soluble silica/silicic acid. That suggests life actually started at geothermal vents.

Now, back to evolution. RNA has a rather unique property amongst polymers in that the strands, when they get to a certain length and can be bent into a certain configuration and presumably held there with magnesium ions, they can catalyse the hydrolysis of other strands. It does that seemingly by first attacking the O2 of ribose, which breaks the polymer by hydrolysing the adjacent phosphate ester. The next interesting point is that if the RNA can form a double helix, the O2 is more protected. DNA is, of course, much better protected because it has no O2. So the RNA can build itself, and it can reorganise itself.

If the above is correct, then it places strong restrictions on where life can form. There will be no life in under-ice oceans on Europa (if they exist) for several reasons. First, Europa seemingly has no (or extremely small amounts of) nitrogen or carbon. In the very thin atmosphere of Europa (lower pressures than most vacuum pumps can get on Earth) the major gas is the hydroxyl radical, which is made by sunlight acting on ice. It is extremely reactive, which is why there is not much of it. There is 100,000 times less sodium it the atmosphere. Nitrogen was undetected. The next reason is the formation of the nucleic acid appears to require sunlight, and the ice will stop that. The next reason is that there is no geothermal activity that will make the surfactants, and no agitation to convert them to the vesicles needed to contain the condensation products, the ice effectively preventing that. There is no sign of hydrocarbon residues on the surface. Next, phosphates are essentially insoluble in water and would sink to the bottom of an ocean. (The phosphate for life in oceans on Earth tends to come from water washed down from erosion.) Finally, there is no obvious way to make ribose if there is no silicic acid to orient the formation of the sugar.

All of which suggests that life essentially requires an earth-like planet. To get the silicic acid you need geothermal activity, and that may mean you need felsic continents. Can you get silica deposits from volcanism/geothermal activity when the land is solely basalt? I don’t know, but if you cannot, this proposed mechanism makes it somewhat unlikely there was ever life on Mars because there would be no way to form nucleic acids.

The Year of Elements, and a Crisis

This is the International Year of the Periodic Table, and since it is almost over, one can debate how useful it was. I wonder how many readers were aware of this, and how many really understand what the periodic table means. Basically, it is a means of ordering elements with respect to their atomic number in a way that allows you to make predictions of properties. Atomic number counts how many protons and electrons a neutral atom has. The number of electrons and the way they are arranged determines the atom’s chemical properties, and thanks to quantum mechanics, these properties repeat according to a given pattern. So, if it were that obvious, why did it take so long to discover it?

There are two basic reasons. The first is it took a long time to discover what were elements. John Dalton, who put the concept of atoms on a sound footing, made a list that contained twenty-one, and some of those, like potash, were not elements, although they did contain atoms that were different from the others, and he inferred there was a new element present. The problem is, some elements are difficult to isolate from the molecules they are in so Dalton, unable to break them down, but seeing from their effect on flames knew they were different, labelled them as elements. The second problem is although the electron configurations appear to have common features, and there are repeats in behaviour, they are not exact repeats and sometimes some quite small differences in electron behaviour makes very significant differences to chemical properties. The most obvious example is the very common elements carbon and silicon. Both form dioxides of formula XO2. Carbon dioxide is a gas; you see silicon dioxide as quartz. (Extreme high-pressure forces CO2 to form a quartz structure, though, so the similarity does emerge when forced.) Both are extremely stable, and silicon does not readily form a monoxide, while carbon monoxide has an anomalous electronic structure. At the other end of the “family”, lead does not behave particularly like carbon or silicon, and while it forms a dioxide, this is not at all colourless like the others. The main oxide of lead is the monoxide, and this instability is used to make the anode work in lead acid batteries.

The reason I have gone on like this is to explain that while elements have periodic properties, these are only indicative of the potential, and in detail each element is unique in many ways. If you number them on the way down the column, there may be significant changes depending on whether the number is odd or even that are superimposed on a general change. As an example: copper, silver, gold. Thus copper and gold are coloured; silver is not. The properties of silicon are wildly different from those of carbon; there is an equally dramatic change in properties from germanium to tin. What this means is that it is very difficult to find a substitute material for an element that is used for a very specific property. Further, the amounts of given elements on the planet depend partly on how the planet accreted, thus we do not have much helium or neon, despite these being extremely common elements in the Universe as a whole, and partly on the fact that nucleosynthesis gives variable yields for different elements. The heavier elements in a periodic column are generally formed in lower amounts, while elements with a greater number of stable isotopes, or particularly stable isotopes, tend to be made in greater amounts. On the other hand, their general availability tends to depend on what routes there are for their isolation during geochemical processing. Some elements such as lead form a very insoluble sulphide and that separates from the rock during geothermal processing, but others are much more resistant and remain distributed throughout the rock in highly dilute forms, so even though they are there, they are not available in concentrated forms. The problem arises when we need some of these more difficult to obtain elements, yet they have specific uses. Thus a typical mobile phone contains more than thirty different elements

The Royal Society of Chemistry has found that at least six elements used in mobile phones are going out be mined out in at least 100 years. These have other uses as well. Gallium is used in microchips, but also in LEDs and solar panels. Arsenic is also used in microchips, but also used in wood preservation and, believe it or not, poultry feed. Silver is used in microelectrical components, but also in photochromic lenses, antibacterial clothing, mirrors, and other uses. Indium is used on touchscreens and microchips, but also in solar panels and specialist ball bearings. Yttrium is used for screen colours and backlighting, but also used for white LED lights, camera lenses, and anticancer drugs, e.g. against liver cancer. Finally, there is tantalum, used for surgical implants, turbine blades, hearing aids, pacemakers, and nosescaps for supersonic aircraft. Thus mobile phones will put a lot of stress on other manufacturing. To add to the problems, cell phones tend to have a life averaging two years. (There is the odd dinosaur like me who keeps using them until technology makes it difficult to keep doing it. I am on my third mobile phone.)A couple of other facts. 23% of UK households have an unused mobile phone. While in the UK, 52% of 16 – 24 year olds have TEN or more electronic devices in their home. The RSC estimates that in the UK there are as many as 40 million old and unused such devices in people’s homes. I have no doubt that many other countries, including the US, have the same problem. So, is the obvious answer we should promote recycling? There are recycling schemes around the world, but it is not clear what is being done with what is collected. Recovering the above elements from such a mixture is anything but easy. I suspect that the recyclers go for the gold and one or two other materials, and then discard the rest. I hope I am wrong, but from the chemical point of view, getting such small mounts of so many different elements from such a mix is anything but easy. Different elements tend to be in different parts of the phone, so the phones can be dismantled and the parts chemically processed separately but this is labour intensive. They can be melted down and separated chemically, but that is a very complicated process. No matter how you do it, the recovered elements will be very expensive. My guess is most are still not recovered. All we can hope is they are discarded somewhere where they will lie inertly until they can be used economically.

Biofuels from Algae

In the previous post, I described work that I had done on making biofuels from lignin related materials, but I have also looked at algae, and here hydrothermal processing makes a lot of sense, if for no other reason than algae is always gathered wet. There are two distinct classes: microalgae and macroalga. The reason for distinguishing these has nothing to do with size, but rather with composition. Microalgae have the rather unusual property of being comprised of up to 25% nucleic acid, and the bulk of the rest is lipid or protein, and the mix is adjustable. The reason is microalgae are primarily devoted to reproduction, and if the supply of nitrogen and phosphate is surplus to requirements, they absorb what they can and reproduce, mainly making more nucleic acid and protein. Their energy storage medium is the lipid fraction, so given nutrient-rich conditions, they contain very little free lipids. Lipids are glycerol that is esterified by three fatty acids, in microalgae primarily palmitic (C16) and stearic (C18), with some other interesting acids like the omega-three acids. In principle, microalga would be very nutritious, but the high levels of nucleic acid give them some unfortunate side effects. Maybe genetic engineering could reduce this amount. Macroalgae, on the other hand, are largely carbohydrate in composition. Their structural polysaccharides are of industrial interest, although they also contain a lot of cellulose. The lipid nature of microalgae makes them very interesting when thinking of diesel fuel, where straight-chain hydrocarbons are optimal.

Microalgae have been heavily researched, and are usually grown in various tubes by those carrying out research on making biofuels. Occasionally they have been grown in ponds, which in my opinion is much more preferable, if for no other reason than it is cheaper. The ideal way to grow them seems to be to feed them plenty of nutrients, which leads them to reproduce but produce little in the way of hydrocarbons (but see below) then starve them. They cannot shut down their photosystems, so they continue to take on carbon dioxide and reduce the carbon all the way to lipids. The unimaginative thing to do then is to extract the microalgae and make “biodiesel”, a process that involves extracting the lipids, usually with a solvent such as a volatile hydrocarbon, distilling off the solvent, then reacting that with methanolic potassium hydroxide to make the methyl esters plus glycerol, and if you do this right, an aqueous phase separates out and you can recover your esters and blend them with diesel. The reason I say “unimaginative” is that when you get around to doing this, you find there are problems, and you get ferocious emulsions. These can be avoided by drying the algae, but now the eventual fuel is starting to get expensive, especially since the microalgae are very difficult to harvest in the first place. To move around in the water, they have to have a density that is essentially the same as water, so centrifuging is difficult, and since they are by nature somewhat slimy, they clog filters. There are ways of harvesting them, but that starts to get more expensive. The reason why hydrothermal processing makes so much sense is it is not necessary to dry them; the process works well if they are merely concentrated.

The venture I was involved in helping had the excellent idea of using microalgae that grow in sewage treatment plants, where besides producing the products from the algae, the pollution was also cleaned up, at least it is if the microalgae are not simply sent out into the environment. (We also can recover phosphate, which may be important in the future.). There are problems here, in that because it is so nutrient-rich the fraction of extractable lipids is close to zero. However, if hydrothermal liquefaction is used, the yield of hydrocarbons goes up to the vicinity of over 20%, of which about half are aromatic, and thus suitable for high-octane petrol. Presumably, the lipids were in the form of lipoprotein, or maybe only partially substituted glycerol, which would produce emulsifying agents. Also made are some nitrogen-rich chemicals that are about an order of magnitude more valuable than diesel. The hydrocarbons are C15 and C17 alpha unsaturated hydrocarbons, which could be used directly as a high-cetane diesel (if one hydrogenated the one double bond, you would have a linear saturated hydrocarbon with presumably a cetane rating of 100), and some aromatic hydrocarbons that would give an octane rating well over a hundred. The lipid fraction can be increased by growing them under nutrient-deprived conditions. They cannot reproduce, so they make lipids, and swell, until eventually they die. Once swollen, they are easier to handle as well. And if nothing else, there will be no shortage of sewage in the future.

Macroalgae will process a little like land plants. They are a lot easier to handle and harvest, but there is a problem in obtaining them in bulk: by and large, they only grow in a narrow band around the coast, and only on some rocks, and then only under good marine conditions. If the wave action is too strong, often there are few present. However, they can live in the open ocean. An example is the Sargasso Sea, and it appears that there are about twenty million tonne of them in the Atlantic where the Amazonian nutrients get out to sea. However, in the 1970s the US navy showed they could be grown on rafts in the open ocean with a little nutrient support. It may well also be that free-floating macroalgae can be grown, although of course the algae will move with the currents.

The reason for picking on algae is partly that some are the fastest-growing plants on the planet. They will take more carbon dioxide from the atmosphere more quickly than any other plant, the sunlight absorbed by the plant is converted to chemical energy, not heat, and finally, the use of the oceans is not competing with any other use, and in fact may assist fish growth.

Alternative​ Sources for Fuel: Rubbish

As most people have noticed, there is finally some awakening relating to climate change and the need to switch from fossil fuels, not that politicians are exactly accepting such trends, and indeed they seem to have heads firmly buried in the sand. The difficulty is there are no easy solutions, and as I remarked in a previous post, we need multiple solutions.

So what to do? I got into the matter after the first “energy crisis” in the 1970s. I worked for the New Zealand national chemistry laboratory, and I was given the task of looking at biofuels. My first consideration was that because biomass varies so much, oil would always be cheaper than anything else, and the problem was ultimately so big, one needed to start by solving two problems. My concept was that a good place to start was with municipal rubbish: they pay you to take it away, and they pay a lot. Which leads to the question, how can you handle rubbish and get something back from it? The following is restricted to municipal rubbish. Commercial waste is different because it is usually one rather awkward thing that has specific disposal issues. For example, demolition waste that is basically concrete rubble is useless for recovering energy.

The simplest way is to burn it. You can take it as is, burn it, use the heat in part to recover electricity, and dump the resultant ash, which will include metal oxides, and maybe even metals. The drawback is you should take the glass out first because it can make a slag that blocks air inlets and messes with the combustion. If you are going to do that, you might as well take out the cans as well because they can be recycled. The other drawback is the problem of noxious fumes, etc. These can be caught, or the generators can be separated out first. There are a number of such plants operating throughout the world so they work, and could be considered a base case. There have also been quite satisfactory means of separating the components of municipal refuse, and there is plenty of operational experience, so having to separate is not a big issue. Citizens can also separate, although their accuracy and cooperativeness is an issue.

There are three other technologies that have similarities, in that they basically involve pyrolysis. Simple pyrolysis of waste gives an awful mix, although pyrolysis of waste plastics is a potential source of fuel. Polystyrene gives styrene, which if hydrogenated gives ethylbenzene, a very high-octane petrol. Pyrolysis of polyethylene gives a very good diesel, but pvc and polyurethanes give noxious fumes. Pyrolysis always leaves carbon, which can either be burned or buried to fix carbon. (The charcoal generator is a sort of wood pyrolysis system.)

The next step up is the gasifier. In this, the pyrolysis is carried out by extreme heat, usually generated by burning some of it in air, or oxygen. The most spectacular option I ever saw was the “Purox” system that used oxygen to maintain the heat by burning the char that got to the bottom. It took everything and ended up with a slag that could be used as road fill. I went to see the plant, but it was down for maintenance. I was a little suspicious at the time because nobody was working on it, which is not what you expect for maintenance. Its product was supposed to be synthesis gas. Other plants tended to use air to burn waste to provide the heat, but the problem with this is that the produced gas is full of nitrogen, which means it is a low-quality gas.

The route that took my interest was high-pressure liquefaction, using hydrogen to upgrade the product. I saw a small bench-top unit working, and the product looked impressive. It was supposed to be upgraded to a 35 t/d pilot plant, to take up all of a small city’s rubbish, but the company decided not to proceed, largely because suddenly OPEC lost its cohesion and the price of oil dropped like a stone. Which is why biofuels will never stand up in their own right: it is always cheaper to pump oil from the ground than make it, and it is always cheaper to refine it in a large refinery than in a small-scale plant. This may seem to have engineering difficulties, but this process is essentially the same as the Bergius process that helped keep the German synthetic fuels going in WW II. The process works.

So where does that leave us? I still think municipal waste is a good way to start an attack on climate change, except what some places seem to be doing is shipping their wastes to dump somewhere else, like Africa. The point is, it is possible to make hydrocarbon fuels, and the vehicles that are being sold now will need to be fuelled for a number of years. The current feedstock prices for a Municipal Waste processing plant is about MINUS $100/t. Coupled with a tax on oil, that could lead to money being made. The technologies are there on the bench scale, we need more non-fossil fuel, and we badly need to get rid of rubbish. So why don’t we do something? Because our neo-liberal economics says, let the market decide. But the market cannot recognise long-term options. That is our problem with climate change. The market sets prices, but that is ALL it does, and it does not care if civilization eradicates itself in five years time. The market is an economic form of evolution, and evolution leads to massive extinction events, when life forms are unsuitable for changing situations. The dinosaurs were just too big to support themselves when food supplies became too difficult to obtain by a rather abrupt climate change. Our coming climate change won’t be as abrupt nor as devastating, but it will not be pleasant either. And it won’t be avoided by the market because the market, through the fact that fossil fuels are the cheapest, is the CAUSE of what is coming. But that needs its own post.

Some Unanswered Questions from the Lunar Rocks

In the previous post I hinted that some of what we found from our study of moon rocks raises issues of self-consistency when viewed in terms of the standard paradigm. To summarize the relevant points of that paradigm, the argument goes that the dust in the accretion disk that was left behind after the star formed accreted into Mars-sized bodies that we shall call embryos, and these moved around in highly elliptical orbits and eventually collided to form planets. While these were all mixed up – simulations suggest what made Earth included bodies from outside Mars’ current orbit, and closer to the star than Mercury’s current orbit. These collisions were extraordinarily violent, and the Earth formed from a cloud of silicate vapours that condensed to a ball of boiling silicates at a little under 3000 degrees C. Metallic iron boils at 2862 degrees C, so it was effectively refluxing, and under these conditions it would extract elements such as tungsten and gold that dissolve in iron and take them with it to the core. About sixty million years after Earth formed, one remaining embryo struck Earth, a huge amount of silicates were sent into space, and the Moon condensed from this. The core of this embryo was supposedly iron, and it migrated into the Earth to join our core, leaving the Moon a ball of silicate vapour that had originated from Earth and condensed from something like 10,000 degrees C. You may now see a minor problem for Earth: if this iron took out all the gold, tungsten, etc, how come we can find it? One possibility is the metals formed chemical compounds. That is unlikely because at those temperatures elements that form only moderate-strength chemical bonds would not survive, and since gold is remarkably unreactive, that explanation won’t work. Another problem is that the Moon has very little water and no nitrogen. This easily explained through their being lost to space from the silicate vapours, but where did the Earth get its volatiles? And if the Moon did condense from such high temperatures, the last silicate to condense would be fayalite, but that was not included in the Apollo rocks, or if it were, nothing was made of that. This alone is not necessarily indicative, though, because fayalite is denser than the other olivines, and if there were liquid silicates for long enough it would presumably sink.

The standard paradigm invokes what is called “the late veneer”; after everything was over, Earth got bombarded with carbonaceous asteroids, which contain water, nitrogen, and some of these otherwise awkward metals. It is now that we enter one of the less endearing aspects of modern science: everything tends to be compartmentalised, and the little sub-disciplines all adhere to the paradigm and add small findings that support their view, even if they do not do so particularly well, and there is a reluctance to look at the overall picture. The net result is that while many of the findings can be made to seemingly provide answers to their isolated problems, there is an overall problem with self-consistency. Further, clues that the fundamental proposition might be wrong are carefully shelved.

The first problem was noted at the beginning of the century: the isotope ratios of metals like osmium from such chondrites are different from our osmium. There are various hand-waving argument to the extent that it could just manage if it were mixed with enough of our mantle, but leaving whether the maths are right aside, nobody seems to have noticed the only reason we are postulating this late veneer is that originally the iron stripped all the osmium from the mantle. You cannot dilute A with B if B is not there. There are a number of other reasons, one of which is the nitrogen of such chondrites has more 15N than our nitrogen. Another is to get the amounts of material here we need a huge amount of carbonaceous asteroids, but they have to come through the ordinary asteroids without perturbing them. That takes some believing.

But there is worse. All the rocks found by the Apollo program have none of the required materials and none of the asteroidal isotope signatures. The argument seems to be, they “bounced off” the Moon. But the Moon also has some fairly ferocious craters, so why did the impactors that caused them not bounce off? Let’s suppose they did bounce off, but they did not bounce off the Earth (because the only reason we argue for this is that we need them, so it is said, to account for our supply of certain metals). Now the isotope ratios of the oxygen atoms on the Moon have a value, and that value is constant over rocks that come from deep within the Moon, thanks to volcanism, and for the rocks from the highlands, so that is a lunar value. How can that be the same as Earth’s if Earth subsequently got heavily bombarded with asteroids that we know have different values? My answer, in my ebook “Planetary Formation and Biogenesis” is simple: there were no embryo impacts in forming Earth therefore the iron vapours did not extract out the heavy elements, and there were no significant number asteroid impacts. Almost everything came here when Earth accreted, and while there have been impacts, they made a trivial contribution to Earth’s supply of matter.