Transport System Fuel. Some passing Comments

In the previous series of posts, I have discussed the question of how we should power our transport systems that currently rely on fossil fuels, and since this will be a brief post, because I have been at a conference for most of this week, I thought it would be useful to have a summary. There are two basic objectives: ensure that there are economic transport options, and reduce the damage we have caused to the environment. The latter one is important in that we must not simply move the problem.

At this stage we can envisage two types of power: heat/combustion and electrical. The combustion source of power is what we have developed from oil, and many of the motors, especially the spark ignition motors, have been designed to optimise the amount of the oil that can be so used. The compression of most spark ignition engines is considerably lower than it could be if the octane rating was higher. These motors will be with us for some time; a car bought now will probably still be on the road in twenty years so what do we do? We shall probably continue with oil, but biofuels do offer an alternative. Some people say biofuels themselves have a net CO2 output in their manufacture. Maybe, but it is not necessary; the main reason would be that the emphasis is put onto producing the appropriate liquids because they are worth more than process heat. Process heating can be provided from a number of other sources. The advantages of biofuels are they power existing vehicles, they can be CO2 neutral, or fairly close to it, we can design the system so it produces aircraft fuel and there is really no alternative for air transport, and there are no recycling problems following usage. The major disadvantages are that the necessary technology has not really been scaled up so a lot of work is required, it will always be more expensive than oil until oil supplies run down so there is a poor economic reason to do this unless missions are taxed, and the use of the land for biofuels will put pressure on food production. The answers are straightforward: do the development work, use the tax system to change the economic bias, and use biomass from the oceans.

There are alternatives, mainly gases, but again, most of them involve carbon. These could be made by reducing CO2, presumably through using photolysis of water (thus a sort of synthetic photosynthesis) or through electricity and to get the scale we really need a very significant source of electricity. Nuclear power, or better still, fusion energy would work, but nuclear power has a relative disappointing reputation, and fusion power is still a dream. Hydrazine would make a truly interesting fuel, although its toxicity would not endear it to many. Hydrogen can work well for buses, etc, that have direct city routes.

Electricity can be delivered by direct lines (the preferred option for trains, trams, etc.), but otherwise it must be by batteries or fuel cells. The two are conceptually very similar. Both depend on a chemical reaction that can be very loosely described as “burning” something but generating electricity instead of heat. In the fuel cell, the material being “burnt” is added from somewhere else, and the oxidising agent, which may be air, must also be added. In the battery, nothing is added, and when what is there is used, it is regenerated by charging.

Something like lithium is almost certainly restricted to batteries because it is highly reactive. Lithium fires are very difficult to put out. The lithium ion battery is the only one that has been developed to a reasonable level, and part of the reason for that is that the original market was for mobile phones and laptops. There are potential shortages of materials for lithium ion batteries, but they would never cut in for those original uses. However, as shown in my previous post, recycling of lithium ion batteries will be very difficult to solve the problem for motor vehicle batteries. One alternative for batteries is sodium, obtainable from salt, and no chance of shortage.

The fuel cell offers some different options. A lot has been made of hydrogen as the fuel of the future, and some buses use it in California. It can be used in a combustion motor, but the efficiencies are much better for fuel cells. The technology is here, and hydrogen-powered fuel cell cars can be purchased, and these can manage 500 km on  single charge, and can totally refuel in about 5 minutes. The problem again is, hydrogen refuelling is harder to find. Methanol would be easier to distribute, but methanol fuel cells as of yet cannot sustain a high power take-off. Ammonia fuel cells are claimed to work almost as well as hydrogen and would be the cheapest to operate. Another possibility I advocated in one of my SF novels is the aluminium/chlorine cell, as aluminium is cheap, although chlorine is a little more dangerous.

My conclusions:

(a)  We need a lot more research because most options are not sufficiently well developed,

(b)  None will out-compete oil for price. For domestic transport, taxes on oil are already there, so the competitors need this tax to not apply

(c)  We need biofuels, if for no other reason that maintaining existing vehicles and air transport

(d)  Such biofuel must come at least partly from the ocean,

(e)  We need an alternative to the lithium ion battery,

(f)  We badly need more research on different fuel cells, especially something like the ammonia cell.

Yes, I gree that is a little superficial, but I have been at a conference, and gave two presentations. I need to come back down a little 🙂

The Apollo Program – More Memories from Fifty Years Ago.

As most will know, it is fifty years ago since the first Moon landing. I was doing a post-doc in Australia at the time, and instead of doing any work that morning, when the word got around on that fateful day we all downed tools and headed to anyone with a TV set. The Parkes radio telescope had allowed what they received to be live-streamed to Australian TV stations. This was genuine reality TV. Leaving aside the set picture resolution, we were seeing what Houston was seeing, at exactly the same time. There was the Moon, in brilliant grey, and we could watch the terrain get better defined as the lander approached, then at some point it seemed as if the on-board computer crashed. (As computers go, it was primitive. A few years later I purchased a handheld calculator that would leave that computer for dead in processing power.) Anyway, Armstrong took control, and there was real tension amongst the viewers in that room because we all knew if anything else went wrong, those guys would be dead. There was no possible rescue. The ground got closer, Armstrong could not fix on a landing site, the fuel supply was getting lower, then, with little choice because of the fuel, the ground got closer faster, the velocity dropped, and to everyone’s relief the Eagle landed and stayed upright. Armstrong was clearly an excellent pilot with excellent nerves. Fortunately, the lander’s legs did not drop into a hole, and as far as we could tell, Armstrong chose a good site. Light relief somewhat later in the day to watch them bounce around on the lunar surface. (I think they were ordered to take a 4-hour rest. Why they hadn’t rested before trying to land I don’t know. I don’t know about you, but if I had just successfully landed on the Moon, and would be there for not very long, a four-hour rest would not seem desirable.)

In some ways that was one of America’s finest moments. The average person probably has no idea how much difficult engineering went into that, and how everything had to go right. This was followed up by six further successful landings, and the ill-fated Apollo 13, which nevertheless was a triumph in a different way in that despite a near-catastrophic situation, the astronauts returned to Earth.

According to the NASA website, the objectives of the Apollo program were:

  • Establishing the technology to meet other national interests in space.
  • Achieving preeminence in space for the United States.
  • Carrying out a program of scientific exploration of the Moon.
  • Developing human capability to work in the lunar environment.

The first two appear to have been met, but obviously there is an element of opinion there. It is debatable that the last one achieved much because there has been no effort to return to the Moon or to use it in any way, although that may well change now. Charles Duke turns 84 this year and he still claims the title of “youngest person to walk on the Moon”.

So how successful was the scientific program? In some ways, remarkably, yet in others there is a surprising reluctance to notice the significance of what was found. The astronauts brought back a large amount of lunar rocks, but there were some difficulties here in that until Apollo 17, the samples were collected by astronauts with no particular geological training. Apollo 17 changed that, but it was still one site, albeit with a remarkably varied geological variety. Of course, they did their best and selected for variety, but we do not know what was overlooked.

Perhaps the most fundamental discovery was that the isotopes from lunar rocks are essentially equivalent to earth rocks, and that means they came from the same place. To put this in context, the ratio of isotopes of oxygen, 16O/17O/18O varies in bodies seemingly according to distance from the star, although this cannot easily be represented as a function. The usual interpretation is that the Moon was formed when a small planet, maybe up to the size of Mars, called Theia crashed into Earth and sent a deluge of matter into space at a temperature well over ten thousand degrees Centigrade, and some of this eventually aggregated into the Moon. Mathematical modelling has some success at showing how this happened, but I for one am far from convinced. One of the big advantages of this scenario is that it shows why the Moon has no significant water, no atmosphere, and never had any, apart from some water and other volatiles frozen in deep craters at the South Pole that almost certainly arrived from comets and condensed there thanks to the cold. As an aside, you will often read that the lunar gravity is too weak to hold air. That is not exactly true; it cannot hold it indefinitely, but if it started with carbon dioxide proportional in mass, or even better in cross-sectional area, to what Earth has, it would still have an atmosphere.

One of the biggest disadvantages of this scenario is where did Theia come from? The models show that if the collision, which happened about 60 million years after the Earth formed, occurred from Theia having a velocity much above the escape velocity from Earth, the Moon cannot form. It gets the escape velocity from falling down the Earth’s gravitational field, but if it started far enough further out that would have permitted Theia to have lasted 60 million years, then its velocity would be increased by falling down the solar gravitational field, and that would be enhanced by the eccentricity of its trajectory (needed to collide). Then there is the question of why are the isotopes the same as on Earth when the models show that most of the Moon came from Theia. There has been one neat alternative: Theia accreted at the Earth-Sun fourth or fifth Lagrange point, which gives it indefinite stability as long as it is small. That Theia might have grown just too big to stay there explains why it took so long and starting at the same radial distance as Earth explains why the isotope ratios are the same.

So why did the missions stop? In part, the cost, but that is not a primary reason because most of the costs were already paid: the rockets had already been manufactured, the infrastructure was there and the astronauts had been trained. In my opinion, it was two-fold. First, the public no longer cared, and second, as far as science was concerned, all the easy stuff had been done. They had brought back rocks, and they had done some other experiments. There was nothing further to do that was original. This program had been a politically inspired race, the race was run, let’s find something more exciting. That eventually led to the shuttle program, which was supposed to be cheap but ended up being hideously expensive. There were also the deep space probes, and they were remarkably successful.

So overall? In my opinion, the Apollo program was an incredible technological program, bearing in mind from where it started. It established the US as firmly the leading scientific and engineering centre on Earth, at least at the time. Also, it got where it did because of a huge budget dedicated to one task. As for the science, more on that later.

The Electric Vehicle as a Solution to the Greenhouse Problem

Further to the discussion on climate change, in New Zealand now the argument is that we must reduce our greenhouse emissions by converting our vehicle fleet to electric vehicles. So, what about the world? Let us look at the details. Currently, there are estimated to be 1.2 billion vehicles on the roads, and by 2035 there will be two billion, assuming current trends continue. However, let us forget about such trends, and look at what it would take to switch 1.2 billion electric vehicles to electric. Obviously, at the price of them, that is not going to happen overnight, but how feasible is this in the long run?

For a scoping analysis, we need numbers, and the following is a “back of the envelope” type analysis. This is designed not to give answers, but at least to visualise the size of the problem. To start, we have to assume a battery size per vehicle, so I am going to assume each vehicle will have an 85 kWh battery assembly. A number of vehicles now have more than this, but equally many have less. However, for initial “back of the envelope” scoping, details are ignored. For the current purposes I shall assume an 85 kWh battery assembly and focus n the batteries.

First, we need a graphite anode, which, from web-provided data will require approximately 40 million t of graphite. Since Turkey alone has reserves of about 90 million t, strictly speaking, graphite is not a problem, although from a chemical point of view, what might be called graphite is not necessarily suitable. However, if there are impurities, they can be cleaned up. So far, not a limiting factor.

Next, each battery assembly will use about 6 kg of lithium, and using the best figures from Tesla, at least 17 kg of cobalt. This does not look too serious until we get to multiplying by 1.2 billion, which gets us to 7.2 million tonne of lithium, and 20.4 million t of cobalt. World production of lithium is 43,000 t/a, while that of cobalt is 110,000 t/a, and most of the cobalt goes to other uses already known. So overnight conversion is not possible. The world reserves of lithium are about 16 million t, so there is enough lithium, although since most of the reserves are not actually in production, presumably due to the difficulty in purifying the materials, we can assume a significant price increase would be required. Worse, the known reserves for cobalt are 7,100,000 so it is not possible to power these vehicles with our current “best battery technology”. There are alternatives, such as manganese based cathode additives, but with current technology they only have about 2/3 the power density and they can only last for about half the number of power cycles, so maybe this is not an answer.

Then comes the problem of how to power these vehicles. Let us suppose they use about ¼ of their energy on high-use days and they recharge for the next day. That requires about 24 billion kWhr of electricity generated that day for this purpose. World electricity production is currently a little over 21,000 TWh, Up to a point, that indicates “no problem”, except that over 1/3 of that came from coal, while gas and oil burning added to coal brought the fossil fuels contribution up to 2/3 of world energy production, and coal burning was the fastest growing contribution to energy demand. Also, of course, this is additional electricity we need. Global energy demand rose by 900 TWh in 2018. (Electricity statistics from the International Energy Agency.) So switching to electric vehicles will increase coal burning, which increases the emission of greenhouse gases, counter to the very problem you are trying to solve. Obviously, electricity supply is not a problem for transport, but it clearly overwhelms transport in contributing to the greenhouse gas problem. Germany closing its nuclear power stations is not a useful contribution to the problem.

It is frequently argued that solar power is the way to collect the necessary transport electricity. According to Wikipedia, the most productive solar power plant is in China’s Tengger desert, which produces 1.547 GW from 43 square kilometers. If we assume that it can operate like this for 6 hrs per day, we have 9.3 Gwh/day. The Earth has plenty of area, however, the 110,000 square km required is a significant fraction. Further, most places do not have such a friendly desert close by. Many have proposed that solar panels of the roof of houses could store power through the day and charge the vehicle at night, but to do that we have just doubled the battery requirements, and these are strained already. The solar panels could feed the grid through the day and charge the vehicles through the night when peak power demand has fallen away, so that would solve part of the problem, but now the solar panels have to make sense in terms of generating electricity for general purposes. Note that if we develop fusion power, which would solve a lot of energy requirements, it is most unlikely a fusion power plant could have its energy output varied too much, which would mean they would have run continuously through the night. At this point, charging electric cars would greatly assist the use of fusion power.

To summarise the use of electricity to power road transport using independent vehicles, there would need to be a significant increase in electricity production, but it is still a modest fraction of what we already generate. The reason it is so significant to New Zealand is that much of New Zealand electricity is renewable anyway, thanks to the heavy investment in hydropower. Unfortunately, that does not count because it was all installed prior to 1990. Those who turned off coal plants to switch to gas that had suddenly became available around 1990 did well out of these protocols, while those who had to resort to thermal because the hydro was fully utilised did not. However, in general the real greenhouse problem lies with the much bigger thermal power station emissions, especially the coal-fired stations. The limits to growth of electric vehicles currently lie with battery technology, and for electric vehicles to make more than a modest contribution to the transport problems, we need a fundamentally different form of battery or fuel cell. However, to power them, we need to develop far more productive electricity generation that does emit greenhouse gases.

Finally, I have yet to mention the contribution of biofuels. I shall do that later, but if you want a deeper perspective than in my blogs, my ebook “Biofuels” is 99c this week at Smashwords, in all formats. (https://www.smashwords.com/books/view/454344.)  Three other fictional ebooks are also on discount. (Go to https://www.smashwords.com/profile/view/IanMiller)

Climate Change: the Potential for Electric Vehicles

In my last post, I discussed the need for action over climate change. Suppose we decide to be more responsible, what can we do? There are several issues, but the main ones include is a solution fit for purpose, which includes will the general population see it as such and does it achieve a useful goal, and is it actually possible? To illustrate what I mean, consider the “easy option”: scrap motor cars and replace with electric vehicles. At first sight, that is easy and you will probably think there is no technological advance needed. Well, think again on both of those. Let’s put numbers on the problem: according to Wikipedia, the number of motor vehicles in the world is 1.015 billion.

Now, to consider the issue, “fit for purpose”, in New Zealand, anyway, and I suspect North America will be worse, people drive fairly long distances at least some of the time. One solution to that problem is to make people stop doing that. This is from the “sacrifices have to be made” school. As it happens, energy consumption probably will have to be reduced, but that does not mean that we need some politicians to say which form of energy consumption is forbidden to you. If people must use less, they should have a choice in what form they give it up.

There are two “niches” of electric vehicle, and as examples I shall pick on the Tesla and the Nissan Leaf. The Tesla currently claims a 400 km range (and intends to provide a 500 km range) per charge, while what you get from the Leaf is highly dependent on driving conditions, but it reaches a little over 100 km with average city driving. Basically, the Leaf would be great for someone wishing to commute daily, but not use it for distance driving. As an aside, the dependency on conditions will affect all such cars; we know about this aspect of the Leaf because there is more information available as more Leafs have been sold. The difference in range is simply because the Leaf’s battery is much smaller (198 cells compared with Tesla’s 7,104).

So why doesn’t the Leaf put in more cells? That is partly because of the problem of charging, and partly because of price and suitability for a chosen niche. A review of electric vehicles in our local paper brought up these facts. There are statements that the 400 k type car be charged at home overnight, “just like your mobile phone”. Well, not quite. While that sounds easy enough, where are you going to do it? Your home may have a garage, so maybe there. The mobile connector comes with adaptors that permit charging at 40 amps. Um, does your house have 40 amp rating to your garage, or maybe 50 amp to be on the safe side because you don’t want to accidentally throw the fuse and be walking to wherever next morning? Our reviewer found that to fully charge such a vehicle with 400 km range using his garage power rating took the best part of two days. Using a fast charger as available here, it took 75 minutes. Yes, you can charge these batteries relatively quickly if you can deliver the required current. The reason the Leaf has such a small battery capacity is so that it can be charged overnight with the average domestic power supply, and it can also be recharged while at work if the owner can “graze” on some power supply. Needless to say, once someone published figures like that, someone else challenged them, and pointed out that a steady 7 kW overnight would do it and “nearly two days” was wrong. Unfortunately, power itself is not the whole story because the current has to be rectified and voltage has to be kept to within a specific range. Apply an over-voltage, and different chemistry starts up in the battery that is not reversible, which means you greatly shorten your battery life.

There is some good news on batteries, though. The batteries do decay with time, and while details are not available, one estimate is that Tesla batteries should still be 90% effective after 8 years, which is quite respectable, while the Leaf claims its batteries should last ten years in a workable condition. Thus we have two types of vehicles: an expensive vehicle that can do anything a current vehicle can do on the open highway, provided there are adequate rapid charging sites. Here “adequate” takes on significance; refilling with petrol takes a few minutes and sometimes there is overcrowding. Will there be enough cables if it takes 75 minutes? How much will “site time” charge?

Then there is the question of how you use it. Do you carry big loads? Ferry lots of children? Go off road, or go camping? If so, the current electric vehicle is not for you. So the question then is, for those who see the electric vehicle as all you have to do to solve the transport problem, are they advocating no off-road activity, no camping, no serious loads? The answer is probably, yes. So, do we want to give up our lifestyle? If the answer is no. are there options? Of course not everyone wants to do those sort of things, so there will most certainly be quite sizable niches that can be filled with electric vehicles. Finally, there will be one further problem: the poorer people cannot afford new Teslas, or even new Leafs. They own second hand cars and cannot afford to simply throw that investment away. The liquid fuel transport economy will be with us for a lot longer yet.

The next question is, is it feasible to replace all cars with electric vehicles? For the purpose of analysis, I shall assume everyone wants a Tesla type driving capacity, as the next step is to put numbers on the problem. The battery weight is listed as 540 kg, which means to do the replacement, we would need something approaching half a billion tonne of batteries. That is not all lithium, but it includes “a small amount of cobalt and nickel”. If we interpret that as about 2% the weight each of the batteries, we need about ten million tonne of cobalt and nickel. World production of cobalt in 2017 was about 110,000 tonne, while nickel was over ten times this. Both metals, however, are fully used now, and the cobalt supply is deficient by about two orders of magnitude if all cobalt was devoted to electric vehicles. Unlikely. Oops! That is more than a small problem. It is not a problem right now because electric vehicles comprise only a very small fraction of the market, but it is insoluble. There is a strict limit on the possible supply of cobalt because as far as I know, there are no cobalt ores. Most cobalt comes from the Democratic Republic of Congo, as a by-product of copper mining. There would also be a significant demand for copper. The Tesla has two motors, one of which is 300 kW, so considerable amount of copper would be used, but world production of copper is about 24,000 Mt annually, so that is not an immediate problem, but may be in the long term. The annual supply of graphite is 126,000 t. Given that there will be more graphite used than lithium, this is a serious problem, however there is no shortage of carbon; the problem is converting carbon to graphite. That is quite a subtle problem; as it happens I know how to get close to the required fraction of graphite, but as yet, not economically.

So there are technological problems. Maybe they are soluble, but doing so introduces another problem, as exemplified by finding an alternative to cobalt. Cobalt is needed to give the non-graphitic electrode enough strength that the battery will have adequate lifetimes with good charging rates. So that is probably non-negotiable. There are alternatives, but so far none match the current battery type used by Tesla. Further, to develop a new battery and test its lifetime over ten years takes: you guessed it; the last part alone takes ten years, assuming your first pick works. Therein lies the overall problem; politicians have wasted nearly 30 years on the basis that it was not urgent. However, technical development does take a long time. For that reason it is wrong to lazily say, electric vehicles, or some other solution, will solve the problem. They will most certainly help, but we have to back many more options.

Science and Climate Change

In the previous post, I questioned whether science is being carried out properly. You may well wonder, then, when this week the Intergovernmental Panel on Climate Change issued a rather depressing report, and a rather awkward challenge: according to their report, the world needed to limit the temperature rise to 1.5 degrees C between now and 2050, and to do that, it needed to cut carbon emissions by 45% by 2030, and net zero by 2050. Even then significant amounts of carbon have to be removed from the atmosphere. The first question is, then, is this real, and if so, why has the IPCC suddenly reduced the tolerable emissions? If their scientists previously predicted seriously lower requirements, why should these be considered better? There are two simple answers. The first is the lesser requirements were based on the assumption that nations would promptly reduce emissions. Most actually increased them. The second is more complicated.

The physics have been verified many times. However, predicting the effects is another matter. The qualitative effects are easily predicted, but to put numbers on them requires very complicated modelling. The planet is not an ideal object, and the calculation is best thought of as an estimate. What has probably happened is their modelling made a projection of what would happen, and they did this long enough ago that now that they can compare prediction with where we are now. That tells them how good the various constants they put into the model were. Such a comparison is somewhat difficult, but there are clear signs in our observations, and things are worse than we might hope for.

So, what are we going to do? Nothing dramatic is going to happen on 2040, or 2050. Change will be gradual, but its progress will be unstoppable unless very dramatic changes in our behaviour are made. The technical challenges here are immense. However, there are a number of important decisions to be taken because we are running short of time due to previous inaction. Do we want to defend what we have? Do we want to attempt to do it through sacrificing our life style, or do we want to attempt a more aggressive approach? Can we get sufficient agreement that anything we try will be properly implemented? Worst of all, do we know what our options are? Of these questions, I am convinced that through inaction, and in part the structural defects of academic science, the answer to the last question is no.

The original factor of required emissions reduction was set at 1990 as a reference point. What eventuated was that very few countries actually reduced any emissions, and most increased them. The few that did reduce them did that by closing coal-fired electricity generation and opted for burning natural gas. This really achieves little, and would have happened anyway. Europe did that, although France is a notable exception to this in that it has had significant nuclear power for a long time. Nuclear power has its problems, but carbon emissions are not one of them. The countries of the Soviet Union have also actually had emission reductions, although this is as much as anything due to the collapse of their economies as they made the rather stupid attempt to convert to “free market economics” which permitted a small number of oligarchs to cream the economy, sell off what they could, use what was usable, pay negligible wages and export their profits so they could purchase foreign football clubs. That reduced carbon emissions, but it is hardly a model to follow.

There is worse news. Most people by now have recognized that Donald Trump and the Republican party do not believe in global warming, while a number of other countries that are only beginning to industrialize want the right to emit their share of CO2 and are on a path to burn coal. Some equatorial countries are hell-bent on tearing down their rain forest, while warming in Siberia will release huge amounts of methane, which is about thirty times more potent than CO2. Further, if we are to totally change our way of life, we shall have to dismantle the energy-related infrastructure from the last fifty years or so (earlier material has probably already been retired) and replace it, which, at the very least will require billions of tonnes of carbon to make the required metals.

There will be some fairly predictable cries. Vegetarians will tell everyone to give up meat. Cyclists will tell everyone they should stop driving cars. In short, everyone will have ideas where someone else gives up whatever. One problem is that people tend to want to go for “the magic bullet”, the one fix to fix them all. Thus everyone should switch to driving electric vehicles. In the long term, yes, but you cannot take all those current vehicles off the road, and despite what some say, heavy trucks, major farm and construction equipment, and aircraft are going to run on hydrocarbons for the foreseeable future. People talk about hydrogen, but hydrogen currently requires massive steel bottles (unless you are NASA, or unless you can get hydrides to act reversibly). And, of course, there is a shortage of material to make enough batteries. Yes, electric vehicles, cycling, public transport and being a vegetarian are all noble contributions, but they are just that. Wind and solar power, together with some other sources, are highly desirable, but I suspect that something else, such as nuclear power must be adopted more aggressively. In this context, Germany closing down such reactors is not helpful either.

Removing CO2 from the atmosphere is not that easy either. There have been proposals to absorb it from the effluent gases of coal-fired power stations. Such scrubbing is not 100% efficient, but even if it were, it is not dealing with what is already there. My guess is, that can only be managed by plants in sufficient scale. While not extremely efficient, once going they look after themselves. Eventually you have to do something with the biomass, but restoring all the tropical rain forests would achieve something in the short term. My personal view is the best chances are to grow algae. The sea has a huge area and while we still have to learn how to do it, it is plausible, and the resultant biomass could be used to make biofuel.

No, it is not going to be easy. The real question is, can we be bothered trying to save what we have?

Problems of Sustaining Settlements on Mars: Somewhere to Live.

People who write science fiction find colonizing Mars to be a fruitful source of plot material. Kim Stanley Robinson wrote three books on the topic, ending up by terraforming Mars. I have also written one (“Red Gold”) that included some of the problems. We even have one scheme currently being touted in which people are signing up for non-return trips. So, what are the problems? If we think about settlers making a one-way trip to New Zealand, as my ancestors did, they would find a rough start to life because much of the land was covered in forest, although there were plains. But forests meant timber for houses, some fuel, and even for sale. Leaving aside the stumps, the soil was ripe for planting crops, and you could run sheep or cows. It would have been a hard life, but there would be no reasons to fear instant death.

Mars is different. It has its resources, but they are in an inconvenient form. Take air. Mars has an atmosphere, but not a very dense one. The air pressure is about two orders of magnitude less that on Earth. That means you will have to live in some sort of dome or cave, and pump up the atmosphere to get adequate pressure, which requires you to build something that is airtight. The atmosphere is also full of carbon dioxide, and has essentially no oxygen. The answer to that is simple: build giant glass houses, pump up the atmosphere, and grow plants. That gives you food and oxygen, although you will need some fairly massive glass houses to get enough oxygen. So, how do you go about that? You will need pumps to pump up the air pressure, some form of filters to get the dust out of the inputs, and equipment to erect and seal the glass houses. That will need equipment brought from Earth. Fortunately you can make a lot of glass houses with one set of equipment. However, there are three more things required: glass, metal framing, and some form of footer, to seal in the pressure and stop it leaking back out. Initially that too will have to come from Earth, but sooner or later you have to start making this sort of thing on Mars, as otherwise the expense will be horrendous.

Glass is made by fusing pure silica with sodium carbonate and calcium oxide, and often other materials are added, such as alumina, magnesium oxide, and or borate. It is important to have some additives because it is necessary to filter out the UV radiation from the sun, so silica itself would not suffice. It is also necessary to find a glass that operates best at the lower temperatures, and that can be done, but how do you get the pure ingredients? Most of these elements are common on Mars, but locked up in basaltic rock or dust. The problem here is, Mars has had very little geochemical processing. On Earth, over the first billion years of ocean, a lot of basalt got weathered by the carbonic acid so a lot of magnesium ended up in the sea, and a lot of iron formed ferrous ions in aqueous dispersion. The earliest seas would have been green. Once life learned how to make oxygen, that oxidized the ferrous to ferric, and as ferric hydroxide is very insoluble, masses of iron precipitated out, eventually to dehydrate and make the haematite deposits that supply our steel industry. Life also started using the calcium, and when the life died and sunk to the bottom, deposits of limestone formed. As far as we know, that sort of thing did not happen on Mars. So, while sand is common on Mars, it is contaminated with iron. Would that make a suitable glass? Lava from volcanoes is not usually considered to be prime material for making glass.

So, how do you process the Martian rock? If you are going to try acid leaching, where do you get the acid, and what do you do with the residual solution? And where do you do all this?

While worrying about that, there is the question of the footer. How do you make that? In my novel Red Gold I assumed that they had developed a cement from Martian sources. That is, in my opinion, plausible. It may not be quite like our cement, which is made from limestone and clays heated to about 1700 degrees C. However, some volcanic eruptions produce material which, when heated and mixed with burnt lime make excellent cements. The main Roman cement was essentially burnt lime mixed with some heat-treated output of Vesuvius. Note once again we need lime. This, in turn, could be a problem.

My solution in Red Gold to the elements problem was simply to smash sand into its atoms and separate the elements by electromagnetism, similar to how a mass spectrometer works. The energy input for such a scheme would be very high, but the argument there was they had developed nuclear fusion, so energy was not a problem, nor for that matter, was temperature. No molecules can survive much more than about ten thousand degrees C, and nuclear fusion has a minimum temperature of about eighty million degrees C. Fine, in a novel. Doing that in practice might be a bit more difficult. However, if you don’t do something like that, how do you get the calcium oxide to make your cement, or your glass? And without a glass house, how can you eat and breathe? Put you off going to Mars? If it hasn’t, I assure you once you have your dome your problems are only beginning. More posts on this some time later.

The Need for, and the Problems of, Recycling

The modern economies rely on the supply of raw materials, and of these, elements are the most critical because there are no alternatives to them. Businesses will collapse if certain elements became unavailable, and the British Geological Society puts out a “risk list” of elements that have a risk of supply disruption. The list is debatable, because it includes political risk, thus the most risky from their perspective are the rare earth elements, the problem here being that China is essentially the main producer and reserve holder. These elements’ risk factors also depend on their demand, thus if there is no known use for something, it has zero risk because even if there is none of it, who cares? However, the overall conclusion is, we could have a problem. As in many such issues, not everyone agrees. Staff at the University of Geneva have published a report arguing that there is no shortage, at least for the foreseeable future. They argue you can mine over three kilometers below the Earth’s surface, or in the oceans. Whether you want to do this, or can even find the deposits, is less clear.

There is no shortage of elements but the bulk of them are distributed in very low concentrations in rock, or seawater. It may surprise some to know that there is plenty of gold in seawater. The problem is, it is rather dilute, and of course there are massive amounts of other materials. Thus there is about eleven tonnes of gold in a trillion tonnes of seawater. Good luck trying to get it out. Same with the rare earth elements. They are not especially rare; however they are particularly rare in workable deposits. Part of the problem is their chemistry has a certain similarity to aluminium, and as a result, they tend to be spread out amongst feldsic/granitic material and as microscopic inclusions (mixed with a lot of other stuff) in basalt. Rather interestingly, there are massive deposits on the Moon, where, as the Moon cooled down, the various rocks crystallised into solids, and one of the last of the liquids to solidify was KREEP, a mix of potassium (K), rare earth elements, and phosphate (P). This also indicates the reason why we have ore deposits on Earth: geological processing. Taking gold as an example, it, and silica dissolve in supercritical water, and as the water comes to the surface and cools down, the gold and the silica come out of solution, which is why you find gold in quartz veins. There are, of course, a variety of geological routes to make ores, but geology is a slow process, so once we run out of easy to find deposits, we have a deep problem. And on a planet such as Mars, there has not been so much geological processing, and no plate tectonics.

One way out of this is recycling, if you can work out how to do it and make a dollar. One big user of rare elements is mobile phones. Thus the “swipe-screen” uses indium/tin oxide, the electronics use copper, silver and gold for carrying current, tantalum for microcapacitors, and neodymium in the magnets. These are the critical elements, and in general there are no substitutes for their specific uses. However, the total number of elements used can be up to sixty. The problem for recycling is first, to get hold of the old ones, as opposed to have them lying about or thrown in the trash, and then to separate out what you want. If you simply melt them, you get a horrible mix. The process could be simplified if the phones could be split into parts, thus only the screens contain indium, but how do you do that?

Early on in my scientific career, I was asked by a company to devise a means of recycling coloured plastics. I did this, a pilot plant was built, a few bugs were ironed out and we could recycle coloured polyethylene to get a very light beige product that could be made into new coloured products by the addition of pigments, and the casual user would not know the difference between that and new plastics for most uses. So this should have been a success? Well, no. There were two problems. This was during the oil crisis of the seventies, and what had happened was that there was an oversupply of new polyethylene in the world. Such surplus was dumped on the New Zealand market, where “it would not do any harm”. That dumping made the venture economically unsustainable. Some time later, the dumping stopped, but by this time the original company had lost interest. Also, the manufacturers introduced more cross-linking, and in a quick demonstration, the process did not work without altering the conditions beyond what had been assumed. There were ways around that, but the warning was clear: the manufacturers were not being friendly to recycling as they kept their information close to their chests. Such changes really hinder recycling. However, that was not the worst: new laminates started appearing, and these were a horror for recycling because the two or more different plastics put together as layers do not separate easily, and any product made from a resultant mix will be of very low quality.

So, we can either have a problem with elements, or we can recycle. Recyclers tend not to have the high technology of the multinational corporations, so my recommendation is, manufacturers should be made to design their goods in a way that aids recycling. For example, a laptop or a mobile phone has lithium ion batteries. It is also essentially impossible to get the battery out when it dies and leave the item in a workable condition. It might suit the manufacturer to force the consumer to buy another laptop as opposed to a new battery, but as the technology matures, is that good enough? Similarly, if the motherboards could be removed/replaced, that would aid recycling and also reduce demand for new gadgets. When I was young, people fixed things. I think it is time to return to those times, and also make objects as recyclable as possible. The problem then is, how do you manage that in a market where competition rules, and the consumer does not think about recycling when he or she buys a new product?