Volatiles on Rocky Planets

If we accept the mechanism I posted before is how the rocky planets formed, we still do not have the chemicals for life. So far, all we have is water and rocks with some planets having an iron core. The mechanism means that until the planet gets gravitationally big enough to attract gas it only accretes solids, together with the water that bonded to the silicates. There re two issues: how the carbon and nitrogen arrived, and if these arrived as solids, which is the only available mechanism, what happened next?

In the outer parts of the solar system the carbon occurs as carbon monoxide, methanol, some carbon dioxide, and “carbon”, which essentially many forms but looks like tar, is partially graphite, and there are even mini diamonds. There are also polyaromatic hydrocarbons, and even alkanes, and some other miscellaneous organic chemicals. Nitrogen occurs as nitrogen gas, ammonia, and some cyanide. As this comes closer to the star, and in the region of the carbonaceous chondrites, it starts getting hot enough for some of this to condense and react on the silicates, which is why these have the aminoacids, etc. However, as you get closer to the star, it gets too hot and seemingly the inner asteroids are mainly just silicates. At this point, the carbon is largely converted to carbon monoxide, and the nitrogenous compounds to nitrogen. However, on some metal oxides or metals, carbon forms carbides, nitrogen nitrides, and some other materials, such as cyanamides are also formed. These are solids, and accordingly these too will be accreted with the dust and be incorporated within the planet.

As the interior of the planet gets hotter, the water gets released from the silicates and they lose their amorphous structure and become rocks. The water reacts with these chemicals and to a first approximation initially produces carbon monoxide, methane and ammonia. Carbon monoxide reacts with water on certain metals and silicates to make hydrocarbons, formaldehyde, which in turn condenses to other aldehydes (on the path to making sugars) ammonia (on the path to make aminoacids) and so on. The chemistry is fairly involved, but basically given the initial mix, temperature and pressure, both in ready supply below the Earth’s surface, what we need for life emerges and will make its way to the surface. Assuming this mechanism is correct, then provided everything is present in an adequate mix, then life should evolve. That leaves open the question, how broad is the “right mix” zone?

Before considering that, it is obvious this mechanism relies on the temperature being correct on at least two times during the planetary evolution. Initially it has to get hot enough to make the cements, and the nitrides and carbides. Superficially, that applies to all rocky planets, but maybe not for the nitrides. The problem here is Mars has very little nitrogen, so either it has gone somewhere, or it was never there. If Mars had ammonia, since it dissolves in ice down to minus 80 degrees C, ammonia on Mars would solve the problem of how could water flow there when it is so cold. However, if that is the case, the nitrogen has to be in some solid form buried below the surface. In my opinion, it was carried there as urea dissolved in water, which is why I would love to see some deep digging there.

The second requirement is that later the temperature has to be cool enough that water can set the cements. The problem with Venus is argued that it was hotter and it only just managed to absorb some water, but not enough. One counter to that is that the hydrogen on Venus has an extremely high deuterium content. The usual explanation for this is that if water gets to the top of the atmosphere, it may be hit with UV which may knock off a hydrogen atom, which is lost to space, and solar wind may take the whole molecule, however water with deuterium is less likely to get there because the heavier molecules are enhanced in the lower atmosphere, or the oceans. If this were true, for Venus to have the deuterium levels it must have started with a huge amount of water, and the mechanism above would be wrong. An embarrassing problem is where is the oxygen from that massive amount of water.

However, the proposed mechanism also predicts a very large deuterium enhancement. The carbon and nitrogen in the atmosphere and in living things has to be liberated from rocks by reaction with water, and what happens is as the water transfers hydrogen to either carbon or nitrogen it also leaves a hydroxyl attached to any metal. Two hydroxyls liberate water and leave an oxide. At this point we recall that chemical bond to deuterium is stronger than that to hydrogen, the reason being that although in theory the two are identical from the electromagnetic interactions, quantum mechanics requires there to be a zero point energy, and somewhat oversimplifying, the amount of such energy is inversely proportional to the square root of the mass of the light atom. Since deuterium is twice the mass of hydrogen, the zero point energy is less, and being less, its bond is stronger. That means there is a preference for the hydrogen to be the one that transfers, and the deuterium eventually turns up in the water. This preferential retaining of deuterium is called the chemical isotope effect. The resultant gases, methane and ammonia as examples, break down with UV radiation and make molecular nitrogen and carbon dioxide, with the hydrogen going to space. The net result of this is the rocky planet’s hydrogen gradually becomes richer in deuterium.

The effects of the two mechanisms are different. For Venus, the first one requires huge oceans; the second one little more than enough water to liberate the gases. If we look at the rocky planets, Earth should have a modest deuterium enhancement with both mechanisms because we know it has retained a very large amount of water. Mars is more tricky, because it started with less water under the proposed accretion of water mechanism, and it has less gravity and we know that all gases there, including carbon dioxide and nitrogen have enhanced heavier isotopes. That its deuterium is enhanced is simply expected from the other enhancements. Venus has about half as much CO2 again as Earth, and three times the amount of nitrogen, little water, and a very high deuterium enhancement. In my mechanism, Venus never had much water in the first place because it was too hot. Most of what it had was used up forming the atmosphere, and then providing the oxygen for the CO2. There was never much on the surface. To start with Venus was only a bit warmer than Earth, but as the CO2 began to build, whereas on Earth much of this would be dissolved in the ocean, where it would react with calcium silicate and also begin weathering the rocks that were more susceptible to weathering, such as dunite and peridotite. (I have discussed this previously: https://wordpress.com/post/ianmillerblog.wordpress.com/833 ), on Venus there were no oceans, and liquid water is needed to form these carbonates.

So, where will life be found? The answer is around any star where rocky planets formed with the two favourable temperature profiles, and ended up in the habitable zone. If more details as found in my ebook “Planetary Formation and Biogenesis” are correct, then this is most likely to occur around a G type star, like our sun, or a heavy K type star. The star also has to be one of the few that ejects it accretion disk remains early. Accordingly life should be fairly well spaced out, which may be why we have yet to run into other life forms.


Rocky Planet Formation

In the previous posts I have argued that the evidence strongly supports the concept that the sun eliminated its accretion disk within about 1 My after the star formed. During this 1 My, the disk would be very much cooler than while the sun was accreting, and the temperatures were probably not much different from those now at any given distance from the star in the rocky planet zone. Gas was still falling into the star, but at least ten thousand times slower. We also know (see previous posts) that small solid objects such as CAIs and iron bearing meteorites are much older than the planets and asteroids. If the heavier isotope distributions of xenon and krypton are caused by the hydrodynamic loss to space, which is the most obvious reason, then Earth had to have formed before the disk cleanout, which means Earth was more or less formed within about 1 My after the formation of the sun.

The basic problem for forming rocky planets is how does the rocky material stick together? If you are on the beach, you may note that sand does not turn into a solid mass. A further problem is the collisions of large objects involve huge energies. Glancing collisions lead to significant erosion of both objects, and even direct hits lead to local pulverization and intense heat, together with a shock wave going through the bodies. When the shock wave returns, the pulverized material is sent into space. Basically craters are formed, and a crater is a hole. Adding holes does not build up mass. Finally, if the two are large enough and about equal sized, they each tend to shatter as a consequence of the shock waves. This is why I believe the Monarchic growth makes more sense, where what collides with the major body is much smaller. Once the forming object is big enough, it accretes all small objects it collides with, due to gravity, but the problem is, how do small bodies stick together?

The mechanism I developed goes like this. While the star is accreting, we get very high temperatures and anything over 1000 degrees will lead to silicates softening and becoming sticky. This generates pebbles, stones and boulders that get increasingly big as we get closer to the star, because more of the silicates get more like liquids. At 1550 degrees C, iron melts, and the iron liquids coalesce. That is where the iron meteorites come from. By about 1750 – 1800 degrees silicates get quite soft, and it may be that Mercury formed by a whole lot of “liquids” forming a sticky mass. Behind that would be a distribution of ever decreasingly sized silicate masses, with iron cores where temperatures got over 1550. This would be the origin of the cores for Earth, Venus and Mercury. Mars has no significant iron core because the iron there was still in the very small particulate size.

The standard theory says the cores separated out with heavier liquids sinking, but what most people do not realize is that the core of the Earth does not comprise liquid silicates, at least not the mobile sort. You have no doubt heard that heat rises by convection at hot spots, but it is not a sort of kettle down there. The rate of movement has been estimated at 1 mm per year, which would mean the silicates would rise 1000 km every billion years. We are still well short of one complete turnover. Further an experiment where two different silicates were heated to 2000 degrees C under pressure of 26 Gpa showed that the silicates would only diffuse contents a few meters over the life of the Earth. They may be “liquid” but the perovskite silicates are so viscous nothing moves far in them. So how did the core form so quickly? In my opinion, the reason is the iron has already separated from the silicates, and the collision of a whole lot of small spherical objects do not pack well; there will be channels, and molten iron that already exists in larger masses will flow down them. Less-viscous aluminosilicates will flow up and form the continents.

The next part unfortunately involves some physical chemistry, and there is no way around it. I am going to argue that the silicates that formed the boulders separated into phases. An example is oil and water. Molecules tend to have an energy of association, that is all the water molecules have an energy that tends to hold them all together as a liquid as opposed to a gas, and that tends to keep phases separate because one such energy between like molecules is invariably stronger than the energy between different ones. There is also something called entropy, which favours things being mixed. Now the heat of association of polymers is proportional to the number of mers, while the entropy is (to a first approximation) proportional to the number of molecules. Accordingly, the longer the polymers, the less likely they are to blend, and the more likely to phase separate. That is one of the reasons that recycling plastics is such a problem: you cannot blend them because if the polymers are long, they tend to separate in processing, and your objects have “faults” running through them.

The reason this is important, from my point of view, is that at about 1300 degrees C, calcium silicate tends to phase separate from the rest, and about 1500 degrees C, a number of calcium aluminosilicates start to phase separate. These are good hydraulic cements, and my argument is that after cool down, collisions between boulders makes dust, and the cements are particularly brittle. Then if significant boulders come together gently, e.g. as in the postulated “rubble piles”, the cement dust works it way through them, and water vapour from the disk will set the cement. This works up to about 500 degrees C, but there are catches. Once it gets significantly over 300 degrees C, less water is absorbed, and the harder it is to set it. Calcium silicate only absorbs one molecule of water, but some aluminosilicates can absorb up to twenty molecules per mer. This lets us see why the rocky planets look like they do. Mars is smaller because only the calcium silicate cement can form at that distance, and because iron never melted it does not have an iron core. It has less water because calcium silicate can only set one molecule of water per cement molecule, and it does not have easily separable aluminosilicates so it has very little felsic material. Earth is near the optimum position. It is where the iron core material starts, and because it is further from the sun than the inner planets, there is more iron to sweep up. The separated aluminosilicates rise to the surface and form the felsic continents we walk on, and provided more water when setting the cement. Venus formed where it was a little hot, so it was a slow starter, but once going, it will have had bigger boulders to grow with. It has plenty of iron core, but less felsic material, and it started with less water than Earth. This is conditional on the Earth largely forming before the disk gases were ejected. If we accept that, we have a platform for why Earth has life, but of course that is for later.

From Whence Star-burning Planets?

This series started out with the objective of showing how life could have started, and some may be wondering why I have spent so much time talking about the cold giant planets. The answer is simple. To find the answer to a scientific problem we seldom go directly to it. The reason is that when you go directly to what you are trying to explain you will get an explanation, however for any given observation there will be many possible explanations. The real explanation will also explain every connected phenomenon, whereas the false explanations will only explain some. The ones that are seemingly not directed at the specific question you are trying to answer will nevertheless put constraints on what the eventual answer must include. I am trying to make things easier in the understanding department by considering a number of associated things. So, one more post before getting on to rocky planets.

In the previous two posts, I have outlined how I believe planets form, and why the outer parts of our solar system look like they do. An immediate objection might be, most other systems do not look like ours. Why not? One reason is I have outlined so far how the giants form, but these giants are a considerable distance from the star. We actually have rather little information about planets in other systems at these distances. However, some systems have giants very close to the star, with orbits (years) that take days and we do not. How can that be?

It becomes immediately obvious that planets cannot accrete from solids colliding that close to the star because the accretion disk get to over 10,000 degrees C that close, and there are no solids at those temperatures. The possibilities are that either there is some mechanism that so far has not been considered, which raises the question, why did it not operate here, or that the giants started somewhere else and moved there. Neither are very attractive, but the fact these star-burning giants only occur near a few stars suggests that there is no special mechanism. Physical laws are supposedly general, and it is hard to see why these rare exceptions occur. Further, we can see how they might move.

There is one immediate observation that suggests our solar system is expected to be different from many others and that is, if we look again at LkCa 15b, that planet is three times further from the star than Jupiter is from our star, which means the gas and dust there would have more than three times less concentrated, and collisions between dust over nine times rarer, yet it is five times bigger. That star is only 2 – 3 My old, and is about the same size as our star. So the question is, why did Jupiter stop growing so much earlier when it is in a more favourable spot through having denser gas? The obvious answer is Jupiter ran out of gas to accrete much sooner, and it would do that through the loss of the accretion disk. Stars blow away their accretion disks some time between 1 and 30 My after the star essentially finishes accreting. The inevitable conclusion is that our star blew out its disk of gases in the earliest part of the range, hence all the planets in our system will be, on average, somewhat smaller than their counterparts around most other stars of comparable size. Planets around small stars may also be small simply because the system ran out of material.

Given that giants keep growing as long as gas keeps being supplied, we might expect many bigger planets throughout the Universe. There is one system, around the star HR 8799 which has four giants arrayed in a similar pattern to ours, albeit the distances are proportionately scaled up and the four planets are between five and nine times bigger than Jupiter. The main reason we know about them is because they are further from the star and so much larger, hence we an see them. It is also because we do not observe then from reflected light. They are very young planets, and are yellow-white hot from gravitational accretion energy. Thus we can see how planets can get very big: they just have to keep growing, and there are planets that are up to 18 times bigger than Jupiter. If they were bigger, we would probably call them brown dwarfs, i.e. failed stars.

There are some planets that have highly elliptical orbits, so how did that situation arise? As planets grow, they get gravitationally stronger, and if they keep growing, eventually they start tugging on other planets. If they can keep this up, the orbits get more and more elliptical until eventually they start orbiting very close to each other. They do not need to collide, but if they are big enough and come close enough they exchange energy, in which case one gets thrown outwards, possibly completely out of its solar system, and one gets thrown inwards, usually with a highly elliptical orbit. There are a number of systems where planets have elliptical orbits, and it may be that most do, and if they do, they will exchange energy gravitationally with anything else they come close to. This may lead to a sort of gravitational billiards, where the system gets progressively smaller, and of course rocky planets, being smaller are more likely to get thrown out of the system, or to the outer regions, or into the star.

Planets being thrown into the star may seem excessive, nevertheless in the last week it was announced that a relatively new star, RW Aur A, over the preceding year had a 30 fold increase in the amount of iron in its spectrum. The spectrum of a star comes from whatever is on its surface, so the assumption is that something containing a lot of iron, which would be something the size of a reasonably sized asteroid at least, fell into the star. That means something else knocked it out of its orbit, and usually that means the something else was big.

If the orbit is sufficiently elliptical to bring it very close to the star one of two things happen. The first is it has its orbit circularized close to the star by tidal interactions, and you get one of the so-called star-burners, where they can orbit their star in days, and their temperatures are hideously hot. Since their orbit is prograde, they continue to orbit, and now tidal interactions with the star will actually slowly push the planet further from the star, in the same way our moon is getting further from us. The alternative is that the orbit can flip, and become retrograde. The same thing happens as with the prograde planets, except that now tidal interactions lead to the planet slowly falling into the star.

The relevance of all this is to the question, how common is life in the Universe? If we want a rocky planet in a circular orbit in the habitable zone, then we can eliminate all systems with giants on highly elliptical orbits, or in systems with star burners. However, there is a further possibility that is not advantageous to life. Suppose there are rocky planets formed but the star has yet to elimiinate its accretion disk. The rocky planet will also keep growing and in principle could also become a giant. This could be the reason why some systems have Neptune-sized planets or “superEarths” in the habitable zone. They probably do not have life, so now we have to limit the number of possible star systems to those that eliminate their accretion disk very early. That probably elimimates about 90% of them. Life on a planet like ours might be rarer than some like to think.

Monarchic Growth of Giant Planets

In the previous post, I outlined the basic mechanism of how I thought the giant planets formed, and how their mechanism of formation put them at certain distances from the sun. Given that, like everyone else, I assign Jupiter to the snow point, in which case the other planets are where they ought to be. But that raises the question, why one planet in a zone? Let’s take a closer look at this mechanism.

In the standard mechanism, dust accretes into objects by some unknown mechanism, and does this essentially based on collision probability, and so the disk progresses with a distribution of roughly equal sized objects that collide under the same rules, and eventually become what is called planetesimals, which are about the size of the classical asteroid. (I say classical because as we get better at this, we are discovering a huge number of much smaller “asteroids”, and we have the problem of what does the word asteroid mean?) This process continues, and eventually we get Mars-sized objects called oligarchs, or embryos, then these collide to get planets. The size of the planet depends on how many oligarchs collide, thus fewer collided to make Venus than Earth, and Mars is just one oligarch. I believe this is wrong for four reasons: the first is, giants cannot grow fast enough; second, the dust is still there in 30 My old disks; the collision energies should break up the bodies at any given size because collisions form craters, not hills; the system should be totally mixed up, but isotope evidence shows that bodies seem to have accreted solely from the material at roughly their own distance from the sun.

There is an alternative called monarchic growth, in which, if one body can get a hundred times bigger than any of the others, it alone grows by devouring the others. For this to work, we need initial accretion to be possible, but not extremely probable from dust collisions. Given that we see disks by their dust that are estimated to be up to 30 My old, that seems a reasonable condition. Then, once it starts, we need a mechanism that makes further accretion inevitable, that is, when dust collides, it sticks. The mechanism I consider to be most likely (caveat – I developed it so I am biased) is as follows.

As dust comes into an appropriate temperature zone, then collisions transfer their kinetic energy into heat that melts an ice at the point of contact, and when it quickly refreezes, the dust particles are fused to the larger body. So accretion occurs a little below the melting temperature, and the probability of sticking falls off as the distance from that appropriate zone increases, but there is no sharp boundary. The biggest body will be in the appropriate zone because most collisions will lead to sticking, and once the body gets to be of an appropriate size, maybe as little as a meter sized, it goes into a Keplerian orbit. The gas and dust is going slower, due to gas drag (which is why the star is accreting) so the body in the optimal zone accretes all the dust and larger objects it collides with. Until the body gets sufficiently large gravitationally, collisions have low relative velocity, so the impact energy is modest.

Once it gets gravitationally bigger, it will accrete the other bodies that are at similar radial distance. The reason is that if everything is in circular orbits, orbits slightly further from the star have longer periodic times, in part because they move slightly slower, and in part because they have slightly further to go, so the larger body catches up with them and its gravity pulls the smaller body in. Unless it has exactly the same radial distance from the star, they will pass very closely and if one has enough gravity to attract the other, they will collide. Suppose there are two bodies at the same radial distance. That too is gravitationally unstable once they get sufficiently large. All interactions do not lead to collisions, and it is possible that one can be thrown inwards while the other goes outwards, and the one going in may circularise somewhere else closer to the star. In this instance, Ceres has a density very similar to the moons of Jupiter, and it is possible that it started life in the Jovian region, came inwards, and then finished accreting material from its new zone.

The net result of this is that a major body grows, while smaller bodies form further away, trailing off with distance, then there is a zone where nothing accretes, until further out there is the next accretion zone. Such zones get further away as you get further from the star because the temperature gradient decreases. That is partly why Neptune has a Kuiper Belt outside it. The inner planets do not because with a giant on each side, the gravity causes them to be cleaned out. This means that after the system becomes settled, a lot of residues start bombing the planet. This requires what could be called a “Great Bombardment”, but it means each system gets a bombardment mainly of its own composition, and there could be no significant bombardment with bodies from another system. This means the bombardment would have the same chemical composition as the planet itself.

Accordingly, we have a prediction. Is it right? It is hard to tell on Earth because while Earth almost certainly had such a bombardment, plate tectonics has altered the surface so much. Nevertheless, the fact the Moon has the same isotopes as Earth, and Earth has been churned but the Moon has not, is at least minor support. There is, of course, a second prediction. There seem to be many who assume the interior of the Jovian satellites will have much nitrogen. I predict very little. There will be some through adsorption of ammonia onto dust, and since ammonia binds more strongly than neon, then perhaps there will be very modest levels, but the absence of such material in the atmosphere convinces me it will be very modest.

Was there an Initial Atmosphere from Accretion?

One of the problems with modern science is that once a paradigm has been selected, a layer of “authorities” is set up, and unless the scientist adopts the paradigm, little notice is taken of him or her. This is where conferences become important, because there is an audience that is more or less required to listen. The problem then for the person who has a different view is to show why that view is important enough to be considered. The barrier is rightly high. A new theory MUST do something the old one did not do, and it must not be contradicted by known facts. As I said, a high barrier.

In the previous post, I argued that the chemicals required for life did not come from carbonaceous chondrites or comets, and that is against standard thought. Part of the reason this view is held is that the gases had to come from somewhere, so from where? There are two obvious possible answers. The first is the gases were accreted with the planet as an atmosphere. In this hypothesis, the Earth formed while the disk gases were still there and simple gravity held them. Once the accretion disk was removed by the star, the hydrogen and helium were lost to space because Earth’s gravity was not strong enough, but other gases were retained. This possibility is usually rejected, and in this case the rejection is sound.

The first part of the proposition was almost certainly correct. Gases would have been accreted from the stellar disk, even on rocky planets, and these gases were largely hydrogen and helium. The next part is also correct. Once the disk gases were removed, that hydrogen and helium would be lost to space because Earth’s gravity was not strong enough to hold it. However, the question then is, how was it lost? As it happens, insufficient gravity was not the primary cause, and the loss was much faster than simply seeping off into space. Early in the life of a new star there are vicious solar winds and extreme UV radiation. It is generally accepted that such radiation would boil off the hydrogen and helium, and these would be lost so quickly that the other gases would be removed by hydrodynamic drag, and only some of the very heavier gases, such as krypton and xenon could remain. There is evidence to support this proposal, in that for krypton and xenon higher levels of heavier isotopes are observed. This would happen if most of these gases were removed from the top of the atmosphere, and since the lighter isotopes would preferentially find their way there, they would be removed preferentially. Since this is not observed for neon or argon isotopes, the argument is that all neon and argon in the atmosphere was lost this way, and if so, all nitrogen and carbon oxides, together with all water in the atmosphere would be lost. Basically, apart from the amount of krypton and xenon currently in the atmosphere, there would be no other gases. The standard theory of planetary formation has it that the Earth was a ball of magma, and if so, all water on the surface would be in the gas phase, so for quite some time Earth would be a dry lump of rock with an atmosphere that had a pressure that would be so low only the best vacuum pumps today could match it.

There could be the objection that maybe the star was not that active and we did retain some gases. After all, we weren’t around to check. Can you see why not? I’ll give the reason shortly. However, if we accept that the gases could not have come from the accretion disk, the other alternative is they came from below the ground, i.e. they were emitted by volacanic activity. How does that stand up?

One possibility might be that gases, including water, were adsorbed on the dust, then subsequently emitted by volcanoes. You might protest that if the Earth was a magma ocean, all that water would be immediately ejected from the silicates as a gas, but it turns out that while water is insoluble in silica at surface pressures, at pressures of 5000 atmospheres, granitic magma can dissolve up to 10% water at 1100 degrees C, at least according to Wikipedia. Irrespective of the accuracy of the figures, high temperature silicates under pressure most certainly dissolve water, and it probably hydrolyses the silicate structure and makes it far less viscous. It has been estimated that the water remaining in the mantle is 100 times greater than the current oceans so there is no problem in expecting that the oceans were initially emitted by volcanic activity. As an aside, deep in the mantle the pressures are far greater than 5000 atmospheres. This water is also likely to be very important for another reason, namely reducing the viscosity and lowering the magma density. This assists pull subduction, where the dry, or drier, basalt from the surface is denser than the other material around it and hence descends into the mantle. If the water were not there, we would not have plate tectonics, and if there were no plate tectonics, there would be no recycling of carbon dioxide, so eventually all the carbon dioxide on the surface would be converted to lime and there would be nothing for plants to use. End of life!

However, we know that our atmospheric gases were not primarily adsorbed as dust. How do we know that? In the accretion disk the number of nitrogen atoms is roughly the same as the number of neon atoms, and their heats of adsorption on dust are roughly the same. The only plausible physical means of separating them in the accretion disk is selective sublimation from ice, but ice simply could not survive where Earth formed. So, if our nitrogen came from the disk by simple physical means, then we would have roughly the same amount of neon in our atmosphere as nitrogen. We don’t, and the amount of neon we have is a measure of the amount of gas we have from such adsorption. Neon is present at 0.0018%, which is not very much.

So, in answer to the initial question, for a period there was effectively no atmosphere. To go any further we have to consider how the planets formed, and as some may suspect, I do not accept the standard theory for reasons that will become apparent in the next post.

Meanwhile, may I remind readers that my ebooks on Smashwords are on discount through July. Links to novels:

Puppeteer: http://www.smashwords.com/books/view/69696

‘Bot War: https://www.smashwords.com/books/view/677836

Troubles: https://www.smashwords.com/books/view/174203

Meanwhile, if you want to know scientifically about biofuels:

Biofuels: https://www.smashwords.com/books/view/454344

Science Communication and the 2018 Australasian Astrobiology Meeting

Earlier this week I presented a talk at the 2018 Australasian Astrobiology Meeting, with the objective of showing where life might be found elsewhere in the Universe, and as a consequence I shall do a number of posts here to expand on what I thought about this meeting. One presentation that made me think about how to start this series actually came near the end, and the topic included why do scientists write blogs like this for the general public? I thought about this a little, and I think at least part of the answer, at least for me, is to show how science works, and how scientists think. The fact of the matter is that there are a number of topics where the gap between what scientists think and what the general public think is very large. An obvious one is climate change; the presenter came up with a figure that something like 50% of the general public don’t think that carbon dioxide is responsible for climate change while I think the figures she showed were that 98% of scientists are convinced it does. So why is there a difference, and what should be done about it?

In my opinion, there are two major ways to go wrong. The first is to simply take someone else’s word. In these days, you can find someone who will say anything. The problem then is that while it is all very well to say look at the evidence, most of the time the evidence is inaccessible, and even if you overcome that, the average person cannot make head or tail of it. Accordingly, you have to trust someone to interpret it for you. The second way to go wrong is to get swamped with information. The data can be confusing, but the key is to find critical data. This means that when making a decision as to what causes what, you put aside facts that can mean a lot of different things, and concentrate on those that have, at best, one explanation. Now the average person cannot recognize that, but they can recognize whether the “expert” recognizes it. As an example of a critical fact, back to climate change. The fact that I regard as critical is that there was a long-term series of measurements that showed the world’s oceans were receiving a net power input of 0.6 watt per square meter. That may not sound like much, but multiply it over the earth’s ocean area, and it is a rather awful lot of heat.

Another difficulty is that for any given piece of information, either there may be several interpretations for what caused it, or there may be issues assigning significance. As a specific example from the conference, try to answer the question, “Are we alone”? The answer from Seth Shostak, from SETI, is, so far, yes, at least to the extent we have no evidence to the contrary, but of course if you were looking for radio transmissions, Earth would have failed to show signs until about a hundred years ago. There were a number of other reasons given, but one of the points Seth made was a civilization at a modest distance would have to devote a few hundred MW power to send us a signal. Why would they do that? This reminds me of what I wrote in one of my SF novels. The exercise is a waste of time because everyone is listening; listening is cheap but nobody is sending, and simple economics kills the scheme.

As Seth showed, there are an awful lot of reasons why SETI is not finding anything, and that proves nothing. Absence of evidence is not evidence of absence, but merely evidence that you haven’t hit the magic button yet. Which gets me back to scientific arguments. You will hear people say science cannot prove anything. That is rubbish. The second law of thermodynamics proves conclusively that if you put your dinner on the table it won’t spontaneously drop a couple of degrees in temperature as it shoots upwards and smears itself over the ceiling.

As an example of the problems involved with conveying such information, consider what it takes to get a proof? Basically, a theory starts with a statement. There are several forms of this, but the one I prefer is you say, “If theory A is correct, and I do a set of experiments B, under conditions C, and if B and C are very large sets, then theory A will predict a set of results R. You do the experiments and collect a large set of observations O. Now, if there is no element of O that is not an element of R, then your theory is plausible. If the sets are large enough, they are very plausible, but you still have to be careful you have an adequate range of conditions. Thus Newtonian mechanics are correct within a useful range of conditions, but expand that enough and you need either relativity or quantum mechanics. You can, however, prove a theory if you replace “if” in the above with “if and only if”.

Of course, that could be said more simply. You could say a theory is plausible if every time you use it, what you see complies with your theory’s predictions, and you can prove a theory if you can show there is no alternative, although that is usually very difficult. So why do scientists not write in the simpler form? The answer is precision. The example I used above is general so it can be reduced to a simpler form, but sometimes the statements only apply under very special circumstances, and now the qualifiers can make for very turgid prose. The takeaway message now is, while a scientist likes to write in a way that is more precise, if you want to have notice taken, you have to be somewhat less formal. What do you think? Is that right?

Back to the conference, in the case of SETI. Seth will not be proven wrong, ever, because the hypothesis that there are civilizations out there but they are not broadcasting to us in a way we can detect cannot be faulted. So for the next few weeks I shall look more at what I gathered from this conference.

Tabby’s Star – Affirmation or Misleading?

I hope you all had a good Christmas period. We have been having a heat wave, with temperatures way above normal, and a fairly high humidity as well. Even my cat Horatio can’t get up the energy to pester me for early meals. Anyway, something about astronomy, astrophysics, and even science fiction to start the year. During the break, I entered a debate regarding evidence, which eventually led me to Tabby’s star.

There has been odd behaviour in the star KIC 8462852, sometimes called Boyajian’s star, but more commonly called Tabby’s star, after Tabetha Boyajian, who led the team that discovered the strange behaviour. (Fancy having a star named after you.) The reason it is of interest is it has variable flux, with massive dimmings (up to 22% of total flux that occur with 750 day period) and a number of minor ones (approximately 2% that, because there is a number of them, have not as yet been assigned periods). The star is an F type star, about 1.43 times the size of our sun, and it has a surface temperature of about 6750 oK.

So what is going on? What is causing the light to dim? There are two possibilities: the star itself has a variable output, or something crosses between us and the star, and thus dims it. That, of course, is what happens when a planet crosses in front of the star, and that is what the Kepler telescope looks for. However, a planet crossing does not usually manage such a dimming as this because the planet is compact. For example, during the transit of Venus, you would not notice it on Earth without specially looking for it. To get a 22% reduction in light intensity there has to be something with a very large cross-section getting in the road.

Could the star do it by itself? There are variable stars, but they do not usually behave like this. Some multiple stars do, thus when one star goes behind the other, its light gets cut out, but so far there is no evidence of a companion for Tabby’s star. If the star is variable because it changes output, it usually does so rather slowly, and in ways that an astronomer would recognise. There are exceptions. Extreme magnetic activity or a huge swarm of sunspots might do it but it is difficult to envision this happening with a 750-day period.

Suppose something is getting in the road. For a 750-day period, assuming there is only one major body, it would be about 1.8 AU from its star. (An AU is the distance of Earth from the sun.) That makes it somewhat further from its star than Mars is from ours. One proposal is that if the star is far younger than we think, there may be the remains of an accretion disk, that is, a large mass of dust and small stones that is gravitationally coming together. That raises the objection, why not others at other distances? Also, if the standard theory of planetary formation were correct, this would make the star extremely young, because such an accumulations should create planets. Of course that theory could be wrong, as I believe it is. There have been other proposals such as a swarm of comets, and even the debris from a planetary collision. That is usually strongly rejected, but the logic is interesting. It is asserted the probability of seeing such an event is extremely small. So? Kepler has looked at something like 100,000 stars and found this one event, which makes it rare. Once you have a sample of only one, I do not think a probability argument makes any sense at all since no matter how rare the event, if it happens, it is possible to see it.

Another proposal is a large ringed planet, with Trojans. If that is the case, you will see the large event, and a minor event with about 1/6 the periodicity of the main event before and after it. This at least has the merit of being testable. However, the rings would have to be huge, and in one plane normal to the path of the planet.

One of the more bizarre proposals was that the star is surrounded by parts of a megastructure (a Dyson swarm) constructed by an alien civilization to gather energy from the star. Even in my science fiction, I would not suggest that. It took our planet 4.5 billion years to get a technological society, but we are a very long way from being able to construct such a megastructure, yet others are talking about just possibly this star could still be in its formative years. The other point is, why would any alien want to do that? The proposal was that societies might build them to capture their energy needs, but is that plausible? There are other potential shortages besides energy, including materials that you would have to devote to constructing such a monstrous structure. One problem is the periodicity. If you wanted to capture energy, would you not put it a bit closer to the star? If you put it at half the distance, you only need ¼ the materials to get the same energy.

Then there is the question of the absolute size. To get a 22% dimming, and assuming whatever it is totally eclipses the star, the area has to be a dead minimum of 362 billion square miles. In most cases, it has to be seriously bigger. That is a little under 8,000 times the area of the earth. Given that it would have to have a certain amount of thickness for mechanical strength, the mass of this beast would be a serious fraction of the mass of a rocky planet. Where would aliens get the materials? Destroy a planet?

My guess as to what it is? The mechanism for forming rocky planets outlined in my ebook “Planetary Formation and Biogenesis” was that when the star is accreting, the temperatures in the inner part of the disk get quite high, and where Mercury formed, the rocks and iron got sufficiently hot that the silicates stayed in a sticky molten state long enough for the planet to form. Further out it was hot enough to melt the silicates, but because the distances increase, at that point all that formed were a large number of boulders and lumps of iron encased in rock. As the disk started to run out of material, it would cool down. The boulders would collide and make a lot of dust, some of which acted as a cement. That would permit rocks to come together, and water vapour would set the cement, thus sticking them together. The planet Venus was in a rather delicate position because while the rock density was higher there that at Earth’s position, the temperatures from the star were hotter, and it was more difficult to set the cement. Accordingly, Venus was more difficult to get started. One possibility was that it might not get started, and hence it was predicted that some stars might have a boulder belt around them. These might come together gravitationally, but they would not stick.

Weird though it might seem, Tabby’s star more or less fits what might be expected from that theory. Because of the size of the star, if the initial accretion disk had the same characteristics proportionately to our star, the Earth equivalent would be about 2.75 AU from the star, which puts the “blocking object” more or less where the Venus equivalent should be. If it is as I predicted, there should be effects on the colour of the light, because blue light scatters more than red light if it goes through dust. I am waiting to see what happens. If it does turn out to be a gravitationally focused mass of boulders and dust, remember you heard about it here. Then ask yourself, if the standard theory of planetary formation is actually correct, why has this mass not formed a planet? Then the question is, is this evidence for my theory, or is it something else that is misleading me?