Climate Change and the Oceans

It appears that people are finally seeing that climate change is real, although the depth of their realization leaves much to be desired. Thus German politicians are going to close down their nuclear reactors and presumably burn more carbon. Not exactly constructive. A number of US politicians simply deny it, as if to say that if you deny it often enough, it will go away. Here in New Zealand we have politicians who say, yes it is real, but what they are doing about it tends to be to encourage electric vehicles and bicycles, with a bit of tree planting. Good intentions, but perhaps the commitment is a little less than necessary, but still better than the heads in sand approach. So, consider the size of the problem: the Intergovernmental Panel on Climate Change has stated that to limit global warming to 1.5 degrees compared with pre-industrial levels could require the removal of 20 billion tonnes of CO2 from the atmosphere each year until 2100. That is a much bigger than average ask. However, planting trees is a start, and the good news is they keep working at it, year after year. So, what to do? In my opinion, there is no one big fix. The concept of beating climate change with a thousand cuts is more appropriate. Part of the problem is to persuade people to do something. They turn around and say, why me? Who pays?

As an example, it has been argued that in the US the application of biochar to soils could improve grain harvests by 4.87 – 6.4 %. The carbon tends to last for maybe hundreds of years, at least to some extent, so the argument goes that it will eventually pay for itself, but initially it is a cost. This works particularly well in acidic heavily weathered soils, where the yields are generally somewhat low because they do not hold nutrients well. This is also not exactly a single bullet solution, since with good uptake, it would sequester and offset about 0.5% of US emissions.

There was an article in a recent edition of Nature that summarised marine geoengineering. Rather pickily, they stated that none of the proposals have been rigorously tested scientifically nor published in peer-reviewed journals. Part of this gripe is fair: they complain that results have been published, but in places like websites that no longer work. That is a separate issue really, and provided the work is properly done, peer-reviewed journals, following editorial contractions to save space, may not be the best. But let us leave that for the moment. The oceans are an attractive place for one reason: they are not doing much else other than being a place for fish to live in. Land tends to be owned, and much is either required for environmental reserves or food production. Certainly, there is a lot of land that is little better than waste, often left over from previous forest harvesting, and there is no reason why this could not be planted. Another useful contribution, but what are the options for the sea?

The first approach noted by Nature is to try to reduce the albedo, by reflecting incoming sunlight. Two ways proposed for doing this would be to put films on the water, or to spray water upwards and let it form clouds. The latter should be reasonably harmless, leaving aside the problem of whether some places might be adversely affected, a problem that applies to any such proposal. The former could have a serious adverse effect on marine life. Squirting water into the air to form clouds would seem to reasonably easily tested, but it also leaves the question, who is going to do it because ultimately this concept involves a cost for which there is no return.

Two more processes noted in the article are the spreading of alkaline rock into the sea to absorb CO2, and the spreading of iron-rich fertiliser to promote the growth of microalgae. The problem for the first is what sort of rock? A billion tonne of burnt lime per year would do, but first it would have to have its CO2 pyrolysed off, so that would emit as much as it saved. We could try basalt, such as peridotite, but if we powdered that it would make more sense to apply it to land where previously we had applied lime because it does much the same job, but also absorbs carbon dioxide. The iron fertiliser case is more interesting. There have been experiments to do this. An example: a ship sailed around, spread the crushed rock, and found that yes, there was a microalgal bloom. However, they also concluded that the amount of carbon that was fixed by sinking to the bottom of the sea was insufficient to justify the exercise. That, however, omits two other thoughts. First, what happened to the algae? If it was eaten by fish (or mammals) that would increase the food supply, and an increase in animal biomass also fixes carbon. The second thought is that if it were harvested, it could well be used to make biofuels, which would reduce the requirement for oil consumption, so that is equally useful. Can it be harvested? That is a question that needs more research. As a general rule, if there is just one thing that needs doing, there is usually a way, if you can find it. The making of fuel is easy. I have done it. There is, of course, the problem of making money from it, and with the current cost of oil that is impossible. Also, scale-up is still a problem to be solved.

The final two proposals were to cultivate macroalgae and to upwell deep water and cool the top. The latter does nothing for the carbon problem, so I shall not think too hard about that, but it is almost essential for the former. In the 1970s the US Navy carried out experiments on growing macroalgae on rafts in deep water, and they only grew when deep water was brought to the surface to act as a fertiliser. These algae can also be used as fuel, or the carbon absorbed somewhere else, and some algae are the fastest growing plants on Earth. It is quite fascinating to watch through a microscope and see continual cell division. This may be easier than some think. Apparently floating Sargassum is filling up some sections of the Atlantic and off the coast of Mexico.

So the question then is, should any of this be done? The macroalgae probably have the lowest probability of undesired side effects, since it is merely farming on water that is otherwise unused. However, to absorb enough carbon dioxide to make a serious difference an awful lot of algae would have to be grown. However, the major oceans have plenty of area.

Advertisements

Global warming and rain.

One day when I was a boy in Hokitika (West Coast, South Island, New Zealand) it was raining when I went to school and it got worse, so I had to walk home through water lying everywhere. The water was up to my ankles everywhere, and deeper in lower lying areas. This did not come from the river, but merely from the rain falling, and in nine hours, from memory there was nine inches of rain (a little under 23 cm). This was regarded as exceptional rain then, a once in a hundred year flood.

Now we have global warming so what do we expect? You hear lots of talk about drought, and yes in some parts of the world there will be drought, but in others there will be more rain. The reason is, if the oceans get warmer more water should go into the air. By itself that may not matter too much if the air gets warmer as well, but problems arise if such warm air meets cooler air. This is the sort of thing that causes rain, but now there is more water in the air.

What happens next depends on exactly how the cause behaved. The obvious thing is the rain falls, but when the humidity collapses into rain drops, its going from the gas phase to liquid releases a lot of energy. If there is enough cold air, it might just heat it, especially if the cold came from mountains forcing the air upwards relatively slowly so that it cools and rains on one side of the mountains. That is what happens around Hokitika. Now the hot air blows a strong warm wind over the land to the east, the so-called föhn wind. If the energy cannot be dissipated that way, then stronger circular winds are generated. The tropical cyclones are examples. There was one recently in Madagascar recently that did extreme damage.

So, how will global warming affect these? The short answer is, there will be a variety of ways. Stronger cyclones, more frequent cyclones (because milder systems that get stronger enter the classification) but the more obvious one is more rain because more water has been evaporated. Which gets me back to Hokitika. They have just had a weather system pass over that lasted about a day and a half of continuous rain, and dumped 800 mm of rain in that period (about 31 ½ inches). That is as much as some places get in a year. A little way inland, in the same period they got 1,082 mm, and that is almost 43 inches.

There has been a variety of flooding around the place. A number of houses were inundated because the storm-water drains could not cope and one woman died. Apparently she was driving; she did not like the speed of the water flowing down the road, so she got out. If when driving you see rapidly flowing water of unknown depth ahead, stop and sit it out, or turn back to higher ground. Do not enter. If you are correct in your fear that a car cannot maintain its grip on the road, you walking would be in a worse position. The force of rapidly flowing water will sweep you off your feet, and if it is deep, you are lighter and therefore have less grip. Your grip depends on your weight.

Probably the most frustrating situation has been for tourists south of the Franz Josef glacier, where they are stranded. To the south, the road is apparently cut off around Haast, and to the north of the Fox Glacier, the Waiho bridge was washed out by a river carrying down quite large boulders. A little earlier there were sightseers walking on the bridge, but fortunately they all got off before the bridge went. To give some idea of the water, here are links to two videos of the bridge going: https://www.youtube.com/watch?v=ldCjVqfkKFk   and  https://www.youtube.com/watch?v=wPf49aaomYI The first one also gives a brief example of the New Zealand accent, and the vernacular. Note the bridge was a Bailey bridge and is in principle not expected to be permanent.

Once something like this happens, the blame game starts. One argument was that the river has a history of flooding and of eroding out the land and changing course, so why build a more permanent bridge? Another was the crossing is situated on a major fault and apparently the land is not good for foundations. I suspect that since it is in a very low population area, money is also a relevant issue. Where I live, there are a number of bridges across the Hutt river, and it runs along a major fault line, but being in a major metropolitan area, bridges are built. However, another more pertinent accusation came from a local who had complained a few days before that someone excavating the riverbed a little upstream had created a channel that would direct the heaviest rocks in a flood in the direction of the first supports to give way. Oops! No doubt more will follow.

When I wrote that (yesterday), the weather system was still to the south of here but working its way north. Yesterday we had wind gusts of up to 120 k/h, and while the system was working its way north, apart from some heavy rain last night, it had run out of steam. Today it is quite warm, sunny, no problem.

So is this a sign of climate change? A single incident is not, however I note that the “one in a hundred year rain event” in my youth has happened again now, and apparently in the 1980s. This time it has dumped almost four times the amount of water, and the Tasman Sea is about two Centigrade degrees above average this summer. You form your own opinion.

Smashwords “Read an Ebook Week”

From Sunday, March 3 to Saturday, March 9, Smashwords is running a sale. The ebooks I have there (https://www.smashwords.com/profile/view/IanMiller) are all discounted. The three fiction books form a series.

 

Puppeteer (https://www.smashwords.com/books/view/69696) is a thriller set  in a future where shortages, government debt, and persistent warfare  are eroding governance. Set in California and Kerguelen, Two pairs of people who are unaware of each others’ existence must combine and succeed in countering a terrorist, or a hundred million people will die and billions of dollars of property will be destroyed.

‘Bot War (https://www.smashwords.com/books/view/677836) In which the problems of Puppeteer have not been addressed. The government is still essentially bankrupt, but Islamic terrorists determined for revenge for what happened in their homeland take control of the latest AI war machines.

Troubles (https://www.smashwords.com/books/view/174203) The world is recovering from a state of anarchy. There is money to be made, and opposition to kill. Law and order is privatized, and those with money have a huge advantage.

Biofuels An Overview (https://www.smashwords.com/books/view/454344) Contrary to what many people say, biofuels could make a serious impact on our carbon dioxide emissions (because while the emissions are the same, the carbon originally came from the atmosphere). There are a number of criticisms, and they are valid for many of the proposals, but that is because the easiest options are the least suitable for various reasons, not the least because there is going to be a major need for food. Find out what the better options are, from someone who has worked on the topic for many years.

Fuel for Legacy Vehicles in a “Carbon-free” Environment

Electric vehicles will not solve our emissions problem: there are over a billion petroleum driven vehicles, and they will not go away any time soon. Additionally, people have a current investment, and while billionaires might throw away their vehicles, most ordinary people will not change unless they can sell what they have, which in turn means someone else is using it. This suggests the combustion motor is not yet finished, and the CO2emissions will continue for a long time yet. That gives us a rather awkward problem, and as noted in the previous posts on global warming, there is no quick fix. One of the more obvious contributions could be biofuels. Yes, you still burn carbon, but the carbon came from the atmosphere. There will also be processing energy, but often that can come from the byproducts of the process. At this point I should add a caveat: I have spent quite a bit of my professional life researching this route so perhaps I have a degree of bias.

The first point is that it will be wrong to take grain and make alcohol for fuel, other than as a way of getting rid of spare or spoiled grain. The world will also have a food shortage, especially if the sea levels start rising, because much of the most productive land is low-lying. If we want to grow biomass, we need an area of land roughly equivalent to the area used for food production, and that land is not there. There are wastelands, but they tend to be non-productive. However, that does not mean we cannot grow biomass for fuel; it merely states there is nowhere nearly enough. Again, there is no single fix.

What you get depends critically on how you do it, and what your biomass is. Of the various processes, I prefer hydrothermal processing, which involves heating the biomass in water up to supercritical temperatures with some additional conditions. In effect, this greatly accelerates the processes that formed oil naturally. Corresponding pyrolysis will break down plastics, and in general high quality fuel is obtainable. The organic fraction of municipal refuse could also be used to make fuel, and in my ebook “Biofuel” I calculated that refuse could produce roughly seven litres per week per person. Not huge, but still a contribution, and it helps solve the landfill problem. However, the best options that I can think of include macroalgae and microalgae. Macroalgae would have to be cultivated, but in the 1970s the US navy carried out an exercise that grew macroalgae on “submerged rafts” in the open Pacific, with nutrients from the sea floor brought up from wind and wave action. Currently there is work being carried out growing microalgae in tanks, etc, in various parts of the world. In principle, microalgae could be grown in the open ocean, if we knew how to harvest it.

I was involved in one project that used microalgae grown in sewage treatment plants. Here there should have been a double benefit – sewage has to be treated so the ponds are already there, and the process cleans up the nitrogen and phosphate that would otherwise be dumped into the sea, thus polluting it. The process could also use sewage sludge, and the phosphate, in principle, was recoverable. A downside was that the system would need more area than the average treatment plant because the residence time is somewhat longer than the current time, which seems designed to remove the worst of the oxygen demand then chuck everything out to sea, or wherever. This process went nowhere; the venture needed to refinance and unfortunately they left it too late, namely shortly after the Lehman collapse.

From the technical point of view, this hydrothermal technology is rather immature. What you get can critically depend on exactly how you do it. You end up with a thick brown fluid, from which you can obtain a number of products. Your petrol fraction is generally light aromatics, with a research octane number (RON) of about 140, and the diesel fraction can have a cetane number approaching 100 (because the main components are straight chain C15 or C17 saturated hydrocarbons. Cetane is the C16 equivalent.) These are superb fuels, however while current motors would run very well on them, they are not optimal.

We can consider ethanol as an example. It has an RON somewhere in the vicinity of 120 – 130. People say ethanol is not much of a fuel because its energy content is significantly lower than hydrocarbons, and that is correct, but energy is not the whole story because efficiency also counts. The average petrol motor is rather inefficient and most of the energy comes out as heat. The work you can get out depends on the change of pressure times volume, so the efficiency can be significantly improved by increasing the compression ratio. However, if the compression is too great, you get pre-ignition. The modern motor is designed to run well with an octane number of about 91, with some a bit higher. That is because they are designed to use the most of the distillate from crude oil. Another advantage of ethanol is you can blend in some water with it, which absorbs heat and dramatically increases the pressure. So ethanol and oxygenates can be used.

So the story with biofuels is very similar to the problems with electric vehicles; the best options badly need more research and development. At present, it looks as if they will not get it in time. Once you have your process, it usually takes at least ten years to get a demonstration plant operating. Not a good thought, is it?

Non-Battery Powered Electric Vehicles

If vehicles always drive on a given route, power can be provided externally. Trams and trains have done this for a long time, and it is also possible to embed an electric power source into roads and power vehicles by induction. My personal view is commercial interests will make this latter option rather untenable. So while external power canreplace quite a bit of fossil fuel consumption, self-contained portable sources are required.

In the previous posts, I have argued that transport cannot be totally filled by battery powered electric vehicles because there is insufficient material available to make the batteries, and it will not be very economically viable to own a recharging site for long distance driving. The obvious alternative is the fuel cell. The battery works by supplying electricity that separates ions and converts them to a form that can recombine the ions later, and hence supply electricity. The alternative is to simply provide the materials that will generate the ions and make the electricity. This is the fuel cell, and effectively you burn something, but instead of making heat, you generate electric current. The simplest such fuel cells include the conversion of hydrogen with air to water. To run this sort of vehicle, you would refill your hydrogen tank in much the same way you refill a CNG powered car with methane. There are various arguments about how safe that is. If you have ever worked with hydrogen, you will know it leaks faster than any other gas, and it explodes with a wide range of air mixtures, but on the other hand it also diffuses away faster. Since the product is water (also a greenhouse gas, but one that is quickly cycled away, thanks to rain, etc) this seems to solve everything. Once again, the range would not be very large because cylinders can only hold so much gas. On the other hand, work has been going on to lock the hydrogen into another form. One such form is ammonia. You could actually run a spark ignition motor on ammonia (but not what you buy at a store, which is 2 – 5% ammonia in water), but it also has considerable potential for a fuel cell. However, someone would still have to develop the fuel cell. The problem here is that fuel cells need a lot more work before they are satisfactory, and while the fuel refilling could be like the current service station, there may be serious compatibility problems and big changes would be required to suppliers’ stations.

Another problem is the fuel still has to be made. Hydrogen can be made by electrolysing water, but you are back to the electricity requirements noted for batteries. The other way we get hydrogen is to steam reform oil (or natural gas) and we are back to the same problem of making CO2. There is, of course, no problem if we have nuclear energy, but otherwise the energy issues of the previous post apply, and we may need even more electricity because with an additional intermediate, we have to allow for inefficiencies.

As it happens, hydrogen will also run spark ignition engines. As a fuel, it has problems, including a rather high air to fuel ratio (a minimum of 34/1, although because it runs well lean, it can be as high as 180/1) and because hydrogen is a gas, it occupies more volume prior to ignition. High-pressure fuel injection can overcome this. However there is also the danger of pre-ignition or backfires if there are hot spots. Another problem might include hydrogen getting by the rings into the crankcase, where ignition, if it were to occur, could be a real problem. My personal view is, if you are going to use hydrogen you are better off using it for a fuel cell, mainly because it is over three times more efficient, and in theory could approach five times more efficient. You should aim to get the most work out of your hydrogen.

A range of other fuel cells are potentially available, most of them “burning” metal in air to make the electricity. This has a big advantage because air is available everywhere so you do not need to compress it. In my novel Red Gold, set on Mars, I suggested an aluminium chlorine fuel cell. The reason for this was: there is no significant free oxygen in the thin Martian atmosphere; the method I suggested for refining metals, etc. would make a lot of aluminium and chlorine anyway; chlorine happens to be a liquid at Martian temperatures so no pressure vessels would be required; aluminium/air would not work because aluminium forms an oxide surface that stops it from oxidising, but no such protection is present with chlorine; aluminium gives up three electrons (lithium only 1) so it is theoretically more energy dense; finally, aluminium ions move very sluggishly in oxygenated solutions, but not so if chlorine is the underpinning negative ion. That, of course, would not be appropriate for Earth as the last thing you want would be chlorine escaping.

This leaves us with a problem. In principle, fuel cells can ease the battery problem, especially for heavy equipment, but a lot of work has to be done to ensure it is potentially a solution. Then you have to decide on what sort of fuel cells, which in turn depends on how you are going to make the fuel. We have to balance convenience for the user with convenience for the supplier. We would like to make the fewest changes possible, but that may not be possible. One advantage of the fuel cell is that the materials limitations noted for batteries probably do not apply to fuel cells, but that may be simply because we have not developed the cells properly yet, so we have yet to find the limitations. The simplest approach is to embark on research and development programs to solve this problem. It was quite remarkable how quickly nuclear bombs were developed once we got started. We could solve the technical problems, given urgency to be accepted by the politicians. But they do not seem to want to solve this now. There is no easy answer here.

Where will the Energy for Electric Vehicles come from?

In the previous post, I looked at the issues involved with replacing all motor vehicles with electric vehicles, and noted that is impossible with what we know now because the necessary materials are just not there. Of course there may be new battery technology developed, but there is another issue: from whence the energy? From international energy statistics, petroleum liquids have the equivalent energy of 53 trillion kWh. Since the electric vehicle is more efficient we can divide that number by about three, so we need almost 18 trillion kWh. (The issue is more complicated by whether we are trying to replace petroleum or solve the transport issue, since some petroleum products are used for heating, but for simplicity I am going to stick with that figure.) If we were going to do that by solar energy, the sunlight gives according to Wikipedia, on average about 3.5 – 7 kWh/m2per day. That needs about five trillion square meters devoted to solar energy to replace petroleum products. The Earth’s area is 510 trillion square meters, so we need about 1% of the surface area devoted solely to this, if the cells are 100% efficient. The highest efficiencies so far (Data from NREL) come from four junctions, gallium arsenide, and a concentrator where 46.6% has been reached. For single junction cells using gallium arsenide, we get 35% efficiency, while silicon cells have reached 27.6%. If silicon, we need 4% of the world’s area.

It is, of course, a bit worse than this because 70% of the world’s surface is ocean, and we can eliminate the polar regions, and we can eliminate the farmland, and we should eliminate the wild-life habitats, and we can probably assume that places like the Sahara or the Himalayas are not available and anyway would be too dusty, too windy, too snowy. Solar energy drops efficiency quite dramatically if the collectors get covered in dust or snow. So, before we get all enthusiastic about solar, note that while it can contribute, equally there are problems. One issue that is seldom mentioned is how we find the materials to make such a huge number of panels. In this context, the world supply of gallium is 180 tonne/a, so basically we should be back to silicon, which is one of the most plentiful elements. (In one of my novels I made a lot of someone finding a source of gallium otherwise overlooked. I feel good about that!). We don’t know how critical element supply would be because currently there is a lot of development work going on on solar conversion and we cannot tell what we will find. The final problem is that latitude also plays a part; in southern England we would be struggling to get the bottom of the range listed above on a sunny day, and of course there are many cloudy days. Accordingly, assuming we do not put the collectors on floats, the required area is starting to get up to 10% of the land area, including highly unsuitable land. We just cannot do it.

That does not mean solar in of no use. One place to put solar panels is on the roof of your house. Superficially, if every motorist did this, the problem is solved, apart from the long-distance driving, at least in the low latitude areas. The difficulty here is that the sun shines in the day, when the commuter uses his car. The energy could be stored, but we have just doubled the battery requirements, and they were already out of hand. You could sell to the power to the grid, and buy power back at night, and there is merit in this as it helps with daylight loads, except that the power companies have to make money, and of course, the greatest normal power requirements are in winter at the beginning and end of the day, when solar is not contributing. So yes, solar power can help, but it is not a single fix. Also, peak power loads are a problem. If the company needs capacity for that, where does it come from? Right now, burning gas or coal. If your electric vehicle is purchased to save the environment from greenhouse gas emission, that is pointless if extra power has to be generated from coal or oil.

My personal view on this is that while renewables are going to be helpful, if we want to stop emitting carbon dioxide when making energy, we have to go partially either nuclear or thermonuclear. My personal preference is for fusion reactors, but we do not know how to make them yet. The main problem with fission reactors is the disposal of waste, and the potential for making materials for bombs. We can get around that if we restrict ourselves to thorium reactors, because the products, while still radioactive, decay much more quickly, and finally you cannot make a thorium bomb. Another benefit of thorium reactors is they cannot get the runaway problems as seen at Chernobyl and Fukushima; they really are very much safer. The problem now is we have not developed thorium fission reactors because everyone uses uranium to make plutonium for bombs.

Even if we manage to get sufficient electricity, the next problem is transmission of this huge increase in electricity. In most countries, the major transmission lines will not take it, and would have to be replaced or supplemented. Not impossible, butat the cost of a lot of carbon dioxide being emitted in making the metals, and transferring them, because massive electric vehicles cannot precede the ability to shift electricity. Again, this is not a problem per se, but it is if we do not get organised quickly. The next problem is to get it to houses. “Slow charging” overnight is probably adequate, even for a tesla. If you can charge it fully in an hour at just over 40 amps, you should need only 3 amps overnight. Not difficult. However, the retail sale of electricity for vehicles travelling is not so easy. It is hard to put figures on this because I don’t know what the demand will be, but charging a vehicle for over an hour means no more than about ten vehicles per day per outlet. It is hard to make money out of that, so you need a lot of outlets. If you have a hundred outlets, you service a thousand cars, say, per day. Still not a lot of profit there and you need a parking lot and some excellent organization. You are also drawing 4,000 amps, so you need a fairly good power supply. Not an enticing proposition for investment.

The point I am trying to make here is that the problem is very large. We have built a monstrous infrastructure around oil, and in the normal circumstances, when we have to change, that industry would go slowly and another would slowly take its place. We don’t have that luxury if we want to save our coastal cities. Yes, everyone can “do their bit”, and that buys time if we all do it, but we also need some bigger help, in organization, research, development and money. It is time for the politicians to stop thinking about the next election, insulting the opposition, and start thinking about their country.

Climate Change: the Potential for Electric Vehicles

In my last post, I discussed the need for action over climate change. Suppose we decide to be more responsible, what can we do? There are several issues, but the main ones include is a solution fit for purpose, which includes will the general population see it as such and does it achieve a useful goal, and is it actually possible? To illustrate what I mean, consider the “easy option”: scrap motor cars and replace with electric vehicles. At first sight, that is easy and you will probably think there is no technological advance needed. Well, think again on both of those. Let’s put numbers on the problem: according to Wikipedia, the number of motor vehicles in the world is 1.015 billion.

Now, to consider the issue, “fit for purpose”, in New Zealand, anyway, and I suspect North America will be worse, people drive fairly long distances at least some of the time. One solution to that problem is to make people stop doing that. This is from the “sacrifices have to be made” school. As it happens, energy consumption probably will have to be reduced, but that does not mean that we need some politicians to say which form of energy consumption is forbidden to you. If people must use less, they should have a choice in what form they give it up.

There are two “niches” of electric vehicle, and as examples I shall pick on the Tesla and the Nissan Leaf. The Tesla currently claims a 400 km range (and intends to provide a 500 km range) per charge, while what you get from the Leaf is highly dependent on driving conditions, but it reaches a little over 100 km with average city driving. Basically, the Leaf would be great for someone wishing to commute daily, but not use it for distance driving. As an aside, the dependency on conditions will affect all such cars; we know about this aspect of the Leaf because there is more information available as more Leafs have been sold. The difference in range is simply because the Leaf’s battery is much smaller (198 cells compared with Tesla’s 7,104).

So why doesn’t the Leaf put in more cells? That is partly because of the problem of charging, and partly because of price and suitability for a chosen niche. A review of electric vehicles in our local paper brought up these facts. There are statements that the 400 k type car be charged at home overnight, “just like your mobile phone”. Well, not quite. While that sounds easy enough, where are you going to do it? Your home may have a garage, so maybe there. The mobile connector comes with adaptors that permit charging at 40 amps. Um, does your house have 40 amp rating to your garage, or maybe 50 amp to be on the safe side because you don’t want to accidentally throw the fuse and be walking to wherever next morning? Our reviewer found that to fully charge such a vehicle with 400 km range using his garage power rating took the best part of two days. Using a fast charger as available here, it took 75 minutes. Yes, you can charge these batteries relatively quickly if you can deliver the required current. The reason the Leaf has such a small battery capacity is so that it can be charged overnight with the average domestic power supply, and it can also be recharged while at work if the owner can “graze” on some power supply. Needless to say, once someone published figures like that, someone else challenged them, and pointed out that a steady 7 kW overnight would do it and “nearly two days” was wrong. Unfortunately, power itself is not the whole story because the current has to be rectified and voltage has to be kept to within a specific range. Apply an over-voltage, and different chemistry starts up in the battery that is not reversible, which means you greatly shorten your battery life.

There is some good news on batteries, though. The batteries do decay with time, and while details are not available, one estimate is that Tesla batteries should still be 90% effective after 8 years, which is quite respectable, while the Leaf claims its batteries should last ten years in a workable condition. Thus we have two types of vehicles: an expensive vehicle that can do anything a current vehicle can do on the open highway, provided there are adequate rapid charging sites. Here “adequate” takes on significance; refilling with petrol takes a few minutes and sometimes there is overcrowding. Will there be enough cables if it takes 75 minutes? How much will “site time” charge?

Then there is the question of how you use it. Do you carry big loads? Ferry lots of children? Go off road, or go camping? If so, the current electric vehicle is not for you. So the question then is, for those who see the electric vehicle as all you have to do to solve the transport problem, are they advocating no off-road activity, no camping, no serious loads? The answer is probably, yes. So, do we want to give up our lifestyle? If the answer is no. are there options? Of course not everyone wants to do those sort of things, so there will most certainly be quite sizable niches that can be filled with electric vehicles. Finally, there will be one further problem: the poorer people cannot afford new Teslas, or even new Leafs. They own second hand cars and cannot afford to simply throw that investment away. The liquid fuel transport economy will be with us for a lot longer yet.

The next question is, is it feasible to replace all cars with electric vehicles? For the purpose of analysis, I shall assume everyone wants a Tesla type driving capacity, as the next step is to put numbers on the problem. The battery weight is listed as 540 kg, which means to do the replacement, we would need something approaching half a billion tonne of batteries. That is not all lithium, but it includes “a small amount of cobalt and nickel”. If we interpret that as about 2% the weight each of the batteries, we need about ten million tonne of cobalt and nickel. World production of cobalt in 2017 was about 110,000 tonne, while nickel was over ten times this. Both metals, however, are fully used now, and the cobalt supply is deficient by about two orders of magnitude if all cobalt was devoted to electric vehicles. Unlikely. Oops! That is more than a small problem. It is not a problem right now because electric vehicles comprise only a very small fraction of the market, but it is insoluble. There is a strict limit on the possible supply of cobalt because as far as I know, there are no cobalt ores. Most cobalt comes from the Democratic Republic of Congo, as a by-product of copper mining. There would also be a significant demand for copper. The Tesla has two motors, one of which is 300 kW, so considerable amount of copper would be used, but world production of copper is about 24,000 Mt annually, so that is not an immediate problem, but may be in the long term. The annual supply of graphite is 126,000 t. Given that there will be more graphite used than lithium, this is a serious problem, however there is no shortage of carbon; the problem is converting carbon to graphite. That is quite a subtle problem; as it happens I know how to get close to the required fraction of graphite, but as yet, not economically.

So there are technological problems. Maybe they are soluble, but doing so introduces another problem, as exemplified by finding an alternative to cobalt. Cobalt is needed to give the non-graphitic electrode enough strength that the battery will have adequate lifetimes with good charging rates. So that is probably non-negotiable. There are alternatives, but so far none match the current battery type used by Tesla. Further, to develop a new battery and test its lifetime over ten years takes: you guessed it; the last part alone takes ten years, assuming your first pick works. Therein lies the overall problem; politicians have wasted nearly 30 years on the basis that it was not urgent. However, technical development does take a long time. For that reason it is wrong to lazily say, electric vehicles, or some other solution, will solve the problem. They will most certainly help, but we have to back many more options.