The Ice Giants’ Magnetism

One interesting measurement made from NASA’S sole flyby of Uranus and Neptune is that they have complicated magnetic fields, and seemingly not the simple dipolar field as found on Earth. The puzzle then is, what causes this? One possible answer is ice.

You will probably consider ice as not particularly magnetic nor particularly good at conducting electric current, and you would be right with the ice you usually see. However, there is more than one form of ice. As far back as 1912, the American physicist Percy Bridgman discovered five solid phases of water, which were obtained by applying pressure to the ice. One of the unusual properties of ice is that as you add pressure, the ice melts because the triple point (the temperature where solid, liquid and gas are in equilibrium) is at a lower temperature than the melting point of ice at room pressure (which is 0.1 MPa. A pascal is a rather small unit of pressure; the M mean million, G would mean billion). So add pressure and it melts, which is why ice skates work. Ices II, III and V need 200 to 600 MPa of pressure to form. Interestingly, as you increase the pressure, Ice III forms at about 200 Mpa, and at about -22 degrees C, but then the melting point rises with extra pressure, and at 350 MPa, it switches to Ice V, which melts at – 18 degrees C, and if the pressure is increased to 632.4 MPa, the melting point is 0.16 degrees C. At 2,100 MPa, ice VI melts at just under 82 degrees C. Skates don’t work on these higher ices. As an aside, Ice II does not exist in the presence of liquid, and I have no idea what happened to Ice IV, but my guess is it was a mistake.

As you increase the pressure on ice VI the melting point increases, and sooner or later you expect perhaps another phase, or even more. Well, there are more, so let me jump to the latest: ice XVIII. The Lawrence Livermore National Laboratory has produced this by compressing water to 100 to 400 GPa (1 to 4 million times atmospheric pressure) at temperatures of 2,000 to 3,000 degrees K (0 degrees centigrade is about 273 degrees K, and the scale is the same) to produce what they call superionic ice. What happens is the protons from the hydroxyl groups of water become free and they can diffuse through the empty sites of the oxygen lattice, with the result that the ice starts to conduct electricity almost as well as a metal, but instead of moving electrons around, as happens in metals, it is assumed that it is the protons that move.

These temperatures and pressures were reached by placing a very thin layer of water between two diamond disks, following which six very high power lasers generated a sequence of shock waves that heated and pressurised the water. They deduced what they got by firing 16 additional high powered lasers that delivered 8 kJ of energy in a  one-nanosecond burst on a tiny spot on a small piece of iron foil two centimeters away from the water a few billionths of a second after the shock waves. This generated Xrays, and from the way they diffracted off the water sample they could work out what they generated. This in itself is difficult enough because they would also get a pattern from the diamond, which they would have to subtract.

The important point is that this ice conducts electricity, and is a possible source of the magnetic fields of Uranus and Neptune, which are rather odd. For Earth, Jupiter and Saturn, the magnetic poles are reasonably close to the rotational poles, and we think the magnetism arises from electrically conducting liquids rotating with the planet’s rotation. But Uranus and Neptune have quite odd magnetic fields. The field for Uranus is aligned at 60 degrees to the rotational axis, while that for Neptune is aligned at 46 degrees to the rotational axis. But even odder, the axes of the magnetic fields of each do not go through the centre of the planet, and are displaced quite significantly from it.

The structure of these planets is believed to be, from outside inwards, first an atmosphere of hydrogen and helium, then a mantle of water, ammonia and methane ices, then interior to that a core of rock. My personal view is that there will also be carbon monoxide and nitrogen ices in the mantle, at least of Neptune. The usual explanation for the magnetism has been that magnetic fields are generated by local events in the icy mantles, and you see comments that the fields may be due to high concentrations of ammonia, which readily forms charged species. Such charges would produce magnetic fields due to the rapid rotation of the planets. This new ice is an additional possibility, and it is not beyond the realms of possibility that it might contribute to the other giants.

Jupiter is found from our spectroscopic analyses to be rather deficient in oxygen, and this is explained as being due to the water condensing out as ice. The fact that these ices form at such high temperatures is a good reason to believe there may be such layers of ice. This superionic ice is stable as a solid at 3000 degrees K, and that upper figure simply represents the highest temperature the equipment could stand. (Since water reacts with carbon, I am surprised it got that high.) So if there were a layer of such ice around Jupiter’s core, it too might contribute to the magnetism. Whatever else Jupiter lacks down there, pressure is not one of them.

Advertisements

Asteroid (101955) Bennu

The results of the OSIRIS-REx probe have now started to be made public, and while this probe was launched to answer questions about carbonaceous asteroids, and while some information has been obtained that is most certainly interesting, what it has mainly done, in my opinion, is to raise more questions. As is often the case with scientific experiments and observations.

Bennu is a carbonaceous asteroid with a semimajor axis of about 1.26 AU, where 1 AU is the Earth-Sun distance. Its eccentricity is 0.2, which means it is Earth-crossing and could collide with Earth. According to Wikipedia, it has a 1 in 2700 chance of impacting Earth between 2175 – 2199. I guess I shall never know, but it would be a threat. It has a diameter of approximately 500 meters, and a mass of somewhere in the vicinity of 7 x 10^10 kg, which means an impact would be extremely damaging near where it struck, but it would not be an extinction event. (The Chicxulub impactor would have been between five to seven orders of magnitude bigger.) So, what do we know about it?

It is described as a rubble pile, although what that means varies in terms of who says it. It is generally not considered to be an original accretion, and it is usually assumed to have formed inside a much larger planetoid which provided heat and pressure to form more complex minerals. Exactly why they are so sure of this is a puzzle to me, because we do not know what the minerals are, and how they are bound into the asteroid. Carbonaceous asteroids usually are found in the outer asteroid belt, and the assumption is this was dislodged inwards as a result of the collision that formed it. Standard theory assumes there were such collisions, but it also assumes such collisions led to planetary formation, and the rather awkward fact that there are no planets in the asteroid belt tends to be overlooked. These collisions are doing a lot of work, first making protoplanets then planets, and second, smashing up protoplanets to make asteroids, with no explanation why two different results arise other than “we need two different results”. Note that the collision velocities in the asteroid belt would be much milder than for the rocky planets, so smashing is more likely the closer to the star. Its relevance to planetary formation may be low since it did not form a planet, and there are no planets that have compositions that could realistically be considered to have come from such a chemical composition.

It is often said that Earth was bombarded with carbonaceous chondrites early on, and that is where the reduced carbon and nitrogen came from to sustain life, as well as the amino acids and nucleobases used to create life. Additionally, it is asserted that the iron and a number of other metals that dissolve in iron that we have on the surface must have come from asteroids, the reason being that in the early formation of Earth, the whole was a mass of boiling silicates in which such metals would dissolve in iron and go to the core. That we have them means something else must have brought them later. This shows one of the major faults of science, in my opinion. Rather than take the observation as a reason to go back and question whether the boiling silicates might be wrong, they introduce a further variable. Unfortunately, this “late veneer”  is misleading because the advocates have refused to accept that we have fragments of asteroids as meteorites. Their isotopes show they could only have contributed the right amount of metals, etc, if they were emulsified in all of Earth’s silicates. But wait. Why would these be emulsified and not go to the core while the original metals were not emulsified and did go to the core?

These asteroids are also believed by many to be the origin of life. They have very small amounts of amino acids and nucleobases, but they have a much wider range of amino acids than are used by our life. If they were the source, why did we not use them? Even more convincing, the nitrogen in the meteorite fragments has more 15N than Earth’s nitrogen. Ours is of solar composition; the asteroids apparently processed it. There is no way to reduce the level of heavy isotopes so these asteroids cannot be the source.

Now, what does a rubble pile conjure up in your mind? I originally considered it to be, well, a pile of rubble, loosely adhering, but Bennu cannot be that. First, consider the escape velocity, which is more than 20 cm/sec in the polar regions but reduces down to 10 cm/sec at the equator, due to the centrifugal force of its rotation. That is not much, and anything loose would be lost in any impact. Yet the surface is littered with boulders, three more than 40 m long. Any significant shock would seemingly dislodge such boulders, especially smaller ones, but there they are, some half buried. There are also impact craters, some up to 150 meters in diameter. Whatever hit it to create that and excavate a hole 150 m in diameter must have delivered a shock wave that should impart more than 10 cm s−1 to a loosely lying boulder, although there is one possible exception, which is when the whole structure was sufficiently flexible to give without fragmenting and absorb the energy by converting it to heat while adding to the kinetic energy of the whole.

Which brings us back to the rubble pile. Bennu’s relative density is 1.19, so if placed in water it would not float, but it would not sink very quickly either. For comparison, it is less than half that of granite and about a third of many basalts. CI asteroidal material has a bulk density of 1.57, while CM asteroidal material has a bulk density of 2.2.  Accordingly, it is concluded that Bennu has a lot of voids in it, which is where the concept of the rubble pile comes to bear. On the other hand, there is considerable stiffness, so something is restricting movement.

So what do we not know about this asteroid? First, we have only a modest idea of what it is made of, although a sample return might be possible. It may well be made entirely of large boulders plus the obvious voids put together with something sticking the boulders together, but what is the something? If made of boulders, what are the boulders made of? It never got hot enough out there to melt silicates, so whatever they are must b held together by some agent, but what? How resilient is that something, and how many times can it be used before it fails? This is important in case we decide it would be desirable to alter its orbit to avoid a collision with Earth. What holds the boulders together? This is important if we want to know how planets form, and whether such an asteroid will be useful in any way. (If, for example, we were to build a giant space station, the nitrogen, organic material and water in such an asteroid would be invaluable.) More to do to unravel this mystery.

Processing Minerals in Space

I have seen some recent items on the web that state that asteroids are full of minerals and fortunes await. My warning is, look deeper. The reason is, most asteroids have impact craters, and from basic physics but some rather difficult calculations you can show these were formed from very energetic collisions. That the asteroid did not fly to bits indicates it is a solid with considerable mechanical strength. That implies the original dust either melted to form a solid, or a significant chemical reaction took place. For those who have read my “Planetary Formation and Biogenesis” you will know why they melted, assuming I am right. So what has that got to do with things? Quite simply, leaving aside metals like gold, the metal oxides in molten silica form the olivine or pyroxene families, or aluminosilicates. That is they form rocks. To give an example of the issue, I recently read a paper where various chondrites were analysed, and the method of analysis recorded the elements separately. The authors were making much of the fact that the chondrites contained 19% iron. Yikes! But wait. Fayalite contains almost 55% iron by weight, but it is useless as an ore. The olivine and pyroxene structures have tetrahedral silicon oxides (the pyroxene as a strand polymer) where the other valence of the oxygen is bound to a divalent cation, mostly magnesium because magnesium is the most common divalent element in the supernova dust. What these authors had done was to analyse rock.

If you read my previous post you will see that I have uncovered yet another problem with science: the authors were very specialized but they went outside their sphere of competency, quite accidentally. They cited numbers because so much in science depends on numbers. But it is also imperative to know what the numbers mean.

On Earth, most of the metals we obtain come from ores, which have formed through various forms of geochemical processing. Thus to get iron, we usually process haematite, which is an iron oxide, but the iron almost certainly started as an average piece of basalt that got weathered. It is most unlikely that good deposits of haematite will be found on asteroids, although it is possible on Mars where small amounts have been found. If Mars is to be settled, processing rocks will be mandatory for survival but the problems are different from those of asteroids. For this post, I wish to restrict myself to discussing asteroids as a source of metals. Let us suppose an asteroid is collected and brought to a processing site, the question is, what next?

The first problem is size-reduction, i.e.breaking it down to more manageable pieces. How do you do that? If you hit it with something, you immediately separate, following Newton’s third law. If you want to see the difficulties, stand on a small raft and try to keep on hitting something. Ah, you say, anchor yourself. How? You have to put something like a piton into solid rock, and how do you do that without some sort of impact? Of course it can be done, but it is not easy. Now you start smashing it. What happens next is bits of asteroid fly off into space. Can you collect all of the pieces? If not, you are a menace because the asteroid’s velocity v, which will be in the vicinity of 30 km/s if near Earth, has to be added to whatever is given to the fragments. Worse, they take on the asteroid’s eccentricity ε(how much difference there is between closest and farthest distance from the sun) and whatever eccentricity has been added by the fragmentation. This is important because the relative velocity of impact assuming the target is on a circular orbit is proportional to εv. Getting hit by a rock at these sort of velocities is no joke.

However, suppose you collect all the rock, you have two choices: you can process the rock as is, or you can try to refine it. If you adopt the latter idea, how do you do it? On Earth, such processing arises through millions of years of action with fluids, or through superheated fluids passing through high temperature rock. That does not sound attractive. Now some asteroids are argued to have iron cores so the geochemical processing has been done for you. Of course you still have to work your way through the rock, and then you have to size reduce the iron, which again raises the question, how? There is also a little less good news awaiting you: iron cores are almost certainly not pure iron. The most likely composition is iron with iron silicide, iron phosphide, iron carbide and a lot of iron sulphide. There will also be some nickel, together with corresponding compounds, and (at last joy?) certain high value metals that dissolve in iron. So what do you do with this mess?

Then, supposing you separate out a pure chemical compound, how do you get the metal out? The energy input required can be very large. Currently, there is a lot of effort being put into removing CO2from the atmosphere. The reason we do not pull it apart and dump the carbon is that all the energy liberated from burning it has to be replaced, i.e.a little under 400 kJ/mol. and that is such a lot of energy. Consider that as a reference unit. It takes roughly two such units to get iron from iron oxide, although you do get two iron atoms. It takes about five units to break forsterite into two magnesium atoms and one silicon. It takes ten such units to break down kaolinite to get two aluminium atoms and two silicon atoms. Breaking down rock is very energy intensive.

People say, electrolysis. The problem with electrolysis is the material has to dissolve in some sort of solvent and then be separated into ions. Thus when making aluminium, bauxite, an aluminium oxide is used. Clays, which are aluminosilicates such as kaolinite or montmorillinite, are not used, despite being much cheaper and more easily obtained. In asteroids any aluminium will almost certainly be in far more complicated aluminosilicates. Then there is the problem of finding a solvent for electrolysis. For the least active metals, such as copper, water is fine, but that will not work for the more active ones, such as aluminium. Titanium would be even more difficult to make, as it is made from the reduction of titanium tetrachloride with magnesium. You have to make all the starting materials!

On Earth, many oxides are reduced to metal by heating with carbon (usually very pure coal) and allow the carbon to take the oxygen and disappear as a gas. The problem with that, in space, is there is no readily available source of suitable carbon. Carbonaceous chondrites have quite complicated molecules. The ancients used charcoal, and while this is NOT pure carbon, it is satisfactory because the only other element there in volume tends to be oxygen. (Most charcoal is about 35% oxygen.) The iron in meteors could certainly be useful, but for some other valuable elements, such as platinum, while it may be there as the element, it will probably be scattered through the matrix and be very dilute.

Undoubtedly there will be ways to isolate such elements, but such methods will probably be somewhat different from what we use. In some of my novels I have had fusion power tear the molecules to atoms, ionise them, and separate out the elements in a similar way to how a mass spectrometer works, that is they are accelerated and then bent with powerful electromagnetic fields. The “bend” in the subsequent trajectory depends on the mass of the ions, so each isotope is separated. Yes, that is fiction, but whatever is used would probably seem like fiction now. Care should be taken with any investment!

Space Law

One of the more notable recent events was the launching of a non-government rocket by a company run by Elon Musk to the International Space Station. Apparently Boeing is going to do something similar in the not too distant future. In some ways this is exciting, because one way or another, human ventures into space will increase markedly. I recall in 1969 sitting in front of a TV one morning (I was in Australia) getting direct feed from Parkes to see the first Moon landing in real time. (OK, there was a slight delay due to the speed of light, and probably more due to feed looping, but you know what I mean.) There was real tension because while everyone was reasonably confident that NASA had selected a good site, it was always possible the ground was not as solid as it might appear and it only needed for the lander to roll over and the ending might have been less than happy. Additionally, the landing was not entirely optimal, and fuel consumption was a little higher than anticipated. This may not seem important, but it did at the time. But all ended well. There were several more Moon landings, and apart from Apollo 13, the program was brilliantly successful. The recovered rocks are still yielding scientific information.

Then the program ended. And nothing more happened. We constructed the International Space Station, with reusable shuttles, but somehow this has had limited value. Certainly, it has permitted the testing of the effects of long periods of weightlessness on people and on other life forms. The best part of this was we got international cooperation. Arguably, humanity was going into space and not just various countries. We have sent a battery rovers and space craft through the solar system, and we genuinely know a lot more about our planetary system. When I was a schoolboy, I believe I knew as much about the planets, other than their orbital details, as anyone. That may sound ridiculous, but I believe it to be true because basically nobody knewvery much at all. They guessed on the basis of their observations, and their guesses were largely wrong. So that part of the space program has been a resounding success, but it brings into question, what is the point of acquiring that information if we do nothing with it? If we do, who does? If different parties go to space, what will be the rules they must follow? Who decides? It is much better if we can get this sorted before various parties get there.

There are two schools of thought. One is, we should stay here and leave the rest of the solar system for careful study, or if we do go somewhere, like Mars, again it should be for study, and we should leave it alone. The other school of thought is the solar system is a resource, and we should be free to tap into it. Which brings up the question, who decides? And what happens if someone does something another group decides should not be done? What happens if one government decides to do something, and a private company decides to do something similar in the same place? How are issues such as these to be resolved?

On Earth, we use the courts to resolve many such issues, although for some issues, governments decide, and of course the split between governments and courts varies from country to country. Worse than that, there is often no real logical reason to prefer one route over another, and the decision is made through politics. Again, different countries have different political systems, so two countries might reach very different decisions based properly on the way they conduct their affairs. Often enough, the various countries find that there is an impasse in finding common ground. What then? Carl von Clausewitz’ “war is a continuation of politics by other means” is not where we want to end up.

There is another problem. For a court to resolve something, there has to be law, and law follows from sovereignty, that is, the right to impose the law, AND the means of enforcing it. So, what happens in space? There is no sovereignty, and suppose there were settlers on Mars, why should they not have their own sovereignty? While they might start off as a colony, through needing a lot of support from people on Earth, their laws should not be imposed by people who have no concept of what life is like there. For example, environmental laws to conserve nature on Earth should not be imposed on Mars, where settlers would struggle just to get what they need to stay alive. Additionally, why would Russian settlers on Mars have to obey American laws, or vice versa? We might argue that the United Nations should set the laws for space, but unless all countries interested in exploring space agreed to them, why should they? Why should countries with no interest in space have standing in setting such laws?

Then there is the question of enforcement. The US is creating a “Space Force” so what happens if they try to stop Russians, say, from doing something in space that the US does not like? Settlements on planets are another matter. There, in my opinion, enforcement will have to fall on settlements, if for no other reason than if a crime is committed on Mars, we cannot have the situation where everyone has to wait for possibly a year and a half to get investigators from Earth. And if anyone thinks there will be no crime, I say, think again. The history of colonization is littered with crime. The US had its “wild west”, Australia its bushrangers, and the history of New Zealand has serious crime, the most spectacular being armed hold-ups of gold during the gold rush days. There will also be other opportunities for crime that are a little more sophisticated, such as in my novel “Red Gold

But there will also be serious commercial disagreements, particularly if some want to use something and others want to preserve it. I believe everyone has the right to their opinion, but there have to be rules and a means of enforcing them to avoid conflict. This procedure should be fully established beforeit is needed. There is plenty of time to argue now, but not in the middle of a dispute, and it is wrong to impose restrictions on an activity when huge sums of money have already been spent.

Oumuamua (1I) and Vega

Oumuamua is a small asteroidal object somewhere between 100 – 1000 meters long and is considerably longer than it is broad. Basically, it looks like a slab of rock, and is currently passing through the solar system on its way to wherever. It is our first observation of an interstellar object hence the bracketed formal name: 1 for first, I for interstellar. How do we know it came from interstellar space? Its orbit has been mapped, and its eccentricity determined. The eccentricity of a circular orbit is zero; an eccentricity greater than zero but less than one means the object is in an elliptical orbit, and the larger the eccentricity, the bigger the difference between closest and furthest approach to the sun. Oumuamua was found to have an eccentricity of 1.1995, which means, being greater than 1, it is on a hyperbolic orbit. It started somewhere where the sun’s gravity is irrelevant, and it will continue on and permanently leave the sun’s gravitational field. We shall never see it again, so the observation of it could qualify it for entry in “The Journal of Irreproducible Results”.

Its velocity in interstellar space (i.e.without the sun’s gravitational effects) was 26.3 km/s. We have no means of knowing where it came from, although if is trajectory is extrapolated backwards, it came from the direction of Vega. Of course it did not come from Vega, because when it passed through the space that Vega now occupies, Vega was somewhere else. Given there is no sign of ice on Oumuamua, which would form something like a cometary tail, it presumably came from the rocky zone closer to its system’s star, and this presumably has given rise to the web speculation that Oumuamua was some sort of alien space ship. Sorry, but no, it is not, and it does not need motors to enter interstellar space.

The way a body like Oumuamua could be thrown into interstellar space goes like this. There has to be a collision between two rocky bodies that are big enough to form fragments of the required size and the collision has to be violent enough to give the fragment a good velocity. That will also make a lot of dust. The fragments would be assumed to then go into elliptical orbits, but if there are both rocky planets and giants, the body could be ejected in the same way the Voyager space craft have left our solar system, namely through gravity assists. If the object is on the right trajectory it could get a gravity assist from an earth-like rocky planet, then another one from a giant that could give it enough impetus to leave the system. This presumably happened a long time ago, so we have no idea where the object came from.

Notwithstanding that, Oumuamua brought Vega to my attention, and it is, at least for me, an interesting star. That, of course, is because I have published a theory of planetary formation that is at odds with the generally accepted one. Vega has about twice the mass of the sun, and because it is bigger, it burns faster, and will have a life of about a billion years. It is roughly half-way through that, so it won’t have had time for planets to evolve intelligent life. The concentration of elements heavier than helium in Vega is about a third that of the sun. Vega also has an abnormally fast rate of rotation, so much so that it is about 88% of what would be required to start the star breaking up. This is significant because one of the oddities of our solar system is that the bulk of the angular momentum resides in the planets, while by far the bulk of the mass lies in the star. The implication might be that the lower level of heavier elements meant that Vega did not form cores fast enough and hence it does not have the giant planets of sufficient size to have taken up sufficient angular momentum. The situation could be like an ice skater who spins very fast, but slows the rotation by extending her arms. If the arms are very short, the spin cannot be slowed as much.

The infra-red emissions from Vega are consistent with a dust disk from about 70 – 100 A.U. out to 330 A.U. from the star (an A.U. is the distance from the sun to the Earth). This is assumed to have arisen from recent collisions of objects comparable to those in the Kuiper Belt here. There is apparently another dusty zone at 8 A.U., which would have to have originated from collisions between rocky objects. So far there is no evidence of planets around Vega, but equally there is no evidence there are none. We view Vega almost aligned with its axis of rotation, so most of the usual techniques for finding planets will not work. The transiting technique of the Kepler program requires us to be aligned with the ecliptic (which should be aligned with the equator) and the Doppler technique has similar limitations, although it has more tolerance for deviation. The Doppler technique detects the gravitational wobble of the star and if you could detect such a wobble directly, you could see it from along the polar axis. Unfortunately, we can’t, at least not yet, and worse, detecting such wobbles works best with very large planets around small stars. Here, if you follow my theory and accept the low metallicity, we expect small planets around a very large star. Direct observation has so far only worked for the first few million years of the star, where giant planets are radiating yellow to white light from their surface temperature that is so hot because of the gravitational accretion energy. These cool down reasonably quickly.

What grabbed my attention about Vega was the 8 A.U. dust zone. That can only be generated by a number of collisions because such dust zones have to be replenished. That is because solar radiation slows dust down, and it gradually falls into the star. So to have a good number of frequent collisions, you need a very large number of objects that could collide, which effectively requires a belt of boulders. So why have they not collided and formed a planet, when the standard theory of planetary formation says planets are formed by the collision of boulders to form planetesimals, and these collide to form embryos, which collide to form planets. In my ebook, “Planetary Formation and Biogenesis” I provide an answer, which is basically that to form rocky planets, the collisions have to happen in the accretion disk, and they happen very fast, and they happen because water vapour in the disk helps set cement. Once the accretion disk is removed, further accretion is impossible, other than from objects colliding with a big enough object for gravity to hold all the debris. Accordingly, collisions of boulder-sized objects or asteroids will make dust, and that would create a dust belt that would not last all that long. The equivalent of the Kuiper Belt around Vega appears to be between 3 – 6 times further out. In my theory, if the planet accreted in the same as the sun, it would be approximately 8 times further out. However, lower dust content may make it harder to radiate energy, hence accretion may be slower. If this second belt scales accordingly, it could correspond to our asteroid belt.  We know occasional collisions did occur in our asteroid belt because we see families of smaller fragments whose trajectories extrapolate back to a singe event. So maybe dust belts are tolerably common for short periods in the life of a star. It would not be a great coincidence we see one around Vega; there are a huge number of stars, we see a very large number of accretion disks, so dust belts should turn up sooner or later.

Finally, why does the star spin faster? Again, in my theory, the planets accrete from the solid and take their angular momentum, but then they also take angular momentum from the disk gas through a mechanism similar to the classical Magnus force. Vega has less dust to make planets, hence less angular momentum is taken that way, and because the planets should be smaller there is less gravity to take angular momentum from the gas, and more gas anyway. So the star retains a higher fraction of its angular momentum. All of this does not prove that my theory is right, but it is comforting that it at least has some sort of plausible support. If interested further, check out http://www.amazon.com/dp/B007T0QE6I.

What do Organic Compounds Found on Mars Mean?

Last week, NASA announced that organic compounds had been found on Mars. The question then is, what does this mean? First, organic compounds are essentially chemicals formed that involve carbon, which means Mars has carbon besides the carbon dioxide in the atmosphere. The name “organic” comes from the fact that such compounds found by early chemists, with the exception of a very few such as carbon dioxide, came from organisms, hence there is the question, do these materials indicate that Mars had life? The short answer is, the issue remains unresolved. One argument is that if there were no organic compounds on Mars, it obviously did not have life. That it has taken so long to find organic compounds does not say anything about the probability, though, because the surface of Mars is strongly oxidizing, and had any been there, they would have been turned into carbon dioxide. The atmosphere already has a lot of that. The reason none has been found, therefore, is because most of the rovers have not been able to dig very deeply.

I shall try to summarise the results that were reported [Eigenbrode et al., Science 360, 1096–1101 (2018)]. One important point is that the volatiles analysed were obtained by pyrolysing the mudstone the rover dug up, so what was detected may not be the same that was in the rock. The first compounds were identified as aliphatic hydrocarbons, from C1 (methane) to C5, and these were stated to be typical of that obtained from Kerogen or coal on Earth. One problem I had with these data was there were odd-numbered masses, BUT they all indicated that the cause was a fractured hydrocarbon, i.e. the pyrolysis had chopped that bit off something else and produced a radical.

One big problem was they could not say whether nitrogen or oxygen was present ” because mass spectra are not resolvable in EGA and other molecules share the diagnostic m/z values. ” I really don’t understand that. First, the identification of aliphatic hydrocarbons was almost certainly correct, because they form series of signals that are very recognizable to anyone who has done a bit of this work before. They stick out like an organ stop, so to speak. However, the presence of nitrogen species in any reasonable amount should be just as easily identified because while hydrocarbons, and their like with oxygen, basically give even mass signals, nitrogen, because of its valency of 3, gives odd numbered mass signals that is 1 bigger than a hydrocarbon. Now, a few of the fragmentation patterns of hydrocarbons give odd numbered mass signals, but if you cannot tell where the molecular ion is, you do not know what the mass of your molecule is. If all you have are fragmentation ions, then the instrument was somewhat poorly designed to go to Mars. With any experience, you can also tell whether you have oxygenated materials because hydrocarbons go up by adding 14 to the basic ion, and the atomic weight of oxygen is 16. If it has oxygen, it abd the fragments containing oxygen have an entirely different mass.

Of course the authors did note the presence of CO2 and CO. These could arise from the pyrolysis of carboxylic acids and ketones, but that does not mean life. Carboxylic acids would pyrolyse at about 400 – 550 degrees C and ketones a bit higher. They also found aromatic hydrocarbons, thiophenes and some other sulphur containing species. These were explained in terms of sulphur –bearing gases coming in contact, and further chemical reactions then taking place, in other words, these sulphur containing species such as hydrogen sulphide do not necessarily provide any information regarding what formed the original deposit. The sulphurization, however, was claimed to provide a preservative function by protecting against mild oxidation. If it carried out that function, it would be oxidized, and none of the observed materials were.

Unfortunately, the material is not directly associated with anything related to life. The remains of life can give rise to these sort of chemicals, as noted by our crude oil, which is basically hydrocarbon, and formed from life, but then altered by tens of millions of years change. These Martian deposits are believed to be in rocks 3.5 billion years old. However, the materials were also obtained by pyrolysis at temperatures exceeding 500 degrees C. The original molecules could have rearranged, and what we saw was the sort of compounds that organic compounds might rearrange to. Nevertheless, the absence of nitrogen is not encouraging. Nitrogen is present in all protein and nucleic acids, and there tends to be high levels of these in primitive life. Pyrolysis would be expected to produce pyrazines and pyridines, and these should be detectable. Pyrazines, having two nitrogen atoms, tend to give even numbered ions, and give the same mass as a ketone, but since neither was seen, that is irrelevant. Had there been such signals, the fragmentation patterns are quite distinctive if you have done this sort of work before.

Other possible sources of organic compounds, besides carbon, are from chondrites that have landed, and geochemically. It is hard to assess chondrites, because we do not have other information. It is possible to tell the difference between oxygen from chondrites from oxygen from other places (because of the different ratios of isotopes of mass 17 and 18 compared with 16), but they never found oxygen. The materials could be geochemical as well. The same reaction used by Germany to make synthetic petrol during WW2 can occur underground, and make hydrocarbons. So overall, while this is certainly interesting, as is often the case it raises more questions than it answers.

Colonizing Mars

Recently, Elon Musk threw a Tesla car at Mars and somewhat carelessly, missed. How can you miss a planet? The answer is, not unsurprisingly, quite easily. Mars might be a planet, and planets might seem large, but they are staggeringly small compared with the solar system. But whatever else this achieved, it did draw attention back to thoughts of humans on Mars, and as an exercise, it is not simple to bring the two together. Stephen Hawking was keen on establishing a colony there, mainly as some sort of reserve for humanity in case we did something stupid with out own planet. Would we do that? Unfortunately, the answer is depressingly quite possibly.

So what is required to get to Mars? First, not missing. NASA has shown that it can do this, so in principle this problem is solved. The second requirement is to arrive at the surface at essentially zero vertical velocity, and NASA has not been quite so successful at that, nevertheless, we can assume that landing will be with a piloted shuttle, so this should be able to be done. So far, so good? Well, not quite, because when you get there you have to have enough “stuff” to ensure you can survive. If it is a scientific exploration, the people will be away for over two years, so at a minimum, they will need groceries for two years, unless they grow their own food. They will need their own oxygen and water unless they can recycle it. They will need some means of getting around or there is no point in going, and they will need some sort of habitat. If they are settlers they will need a lot more because they are not coming back.

The obvious first thing to for settlers to do is to have somewhere to live. We can assume that the ship that brought them will provide a temporary place, although if the ship is to be recycled back to earth and they came down in a shuttle, this is a priority. At the same time they must build facilities to grow their own food and make oxygen. This raises the question, how many people could actually grow food and guarantee to do it well enough not to starve in a totally different environment to here? I am not sure you can train for that, but even if you can, there will still need to be a lot of food taken as well as oxygen. However, let’s assume these settlers are really competent and they are raring to get on with it.

The first requirement would be enough area to do it, so they would need a giant glass house (or houses). That means glass, and metal to hold it, but there is worse. You have to pressurize it, because the Martian atmospheric pressure on average is only about ½% of Earth’s. That means you need a strong pump, but because of the aggressive nature of dust in the atmosphere much of the time, you need some form of filter. The air is about 95.3% carbon dioxide, about 2.7% nitrogen and 1.6% argon. If you want to recover the oxygen to breathe, you want to boost the nitrogen so that what is produced is breathable as air, and that requires a major gas separator. The best way is probably to seriously overpressurise it, so the carbon dioxide comes out as a liquid, and keep the rest. However, there is another problem: you need water, so that equipment will probably have to be made even more complicated so the water in the atmosphere can be recovered. The next problem is that if the glasshouse is to be pressurized, it has to be leak-proof. All the joints have to be sealed with something that will not decay under UV radiation, and worse than that, a deep footer is needed around the glasshouse. That means digging a deep trench, pouring concrete, and sealing the walls. Finally, the whole regolith inside the glasshouse has to be treated to decompose its strong oxidizing nature (but this does produce a small amount of oxygen) otherwise the soil will sterilize anything you plant, then you have to add some actual soil. Many of these operations would be best done mechanically, but they each need their own machine.

You may notice that all of these things costs weight, and that is not what is wanted on a space ship. So the question is, how much can be brought there? There is a second requirement. Every time you use a machine, you need fuel. That has to be electric, which means either batteries, which so far would require huge numbers to keep going all day, or fuel cells, but if fuel cells are selected, what will be the fuel? Note that two fuels are required; one to “burn” and the other to burn it in, as there is no oxygen in the atmosphere worth having. Either way, a serious energy producer is required because not only do you have to power things, but you have to keep your glasshouse warm. The night-time temperatures can drop below minus 100 degrees Centigrade. The most obvious source is nuclear, either fission or fusion, but that requires shielding and even more weight.

The above is just some of the issues. I wrote a novel (Red Gold) that involved Martian settlement. The weight of the two ships was twenty million tonne each, and each had a thermonuclear propulsion system that detached and could be used as power plants and mineral separation units later. The idea was that construction materials would be made there, but even if that is done, a huge amount of stuff has to be taken. Think of the cost of lifting forty million tonne of stuff from Earth into orbit alone. Why two ships? Because everything should be done in duplicate, in case something goes wrong. Why that much stuff? Because you want this not to be some horrible exercise in survival.

At this stage I shall insert a small commercial. Red Gold is a story of such colonization, and of fraud, and it includes a lot more about what it might take to colonize Mars. It is available on Kindle Countdown discounts from 13 – 19 April. (http://www.amazon.com/dp/B009U0458Y)