How do Rocky Planets Form?

A question in my last post raised the question of how do rocky planets form, and why is Venus so different from Earth? This will take two posts; the first covers how the planets form and why, and the second how they evolve immediately after formation and get their atmospheres.

First, a quick picture of accretion. At first, the gas cloud collapses and falls into the star, and in this stage the star the size of the sun accretes something like 2.5 x 10^20 kg per second. Call that stage 1. When the star has gobbled up most of the material, such accretion slows down, and in what I shall call stage 2 it accretes gas at least four orders of magnitude slower. The gas heats due to loss of potential energy as it falls into the star, although it also radiates heat from the dust that gets hot. (Hydrogen and helium do not radiate in the infrared easily.) In stage 1, the gas reached something like 1600 degrees C at 1 A.U. (the distance from Earth to the sun). In stage 2, because far less gas was falling in, the disk had temperatures roughly what bodies have now. Even in stage 2, standard theory has it that boulder-sized objects will fall into the star within about a hundred years due to friction with the gas.

So how did planets form? The standard explanation is that after the star had finished accreting, the dust very rapidly accreted to planetesimals (bodies about 500 km across) and these collided to form oligarchs, and in turn these collided to form planets. I have many objections to this. The reasons include the fact there is no mechanism to form the planetesimals that we assume to begin with. The calculations originally required one hundred million years (100 My) to form Earth, but we know that it had to be essentially formed well before that because the collision that formed the Moon occurred at about 50 My after formation started. Calculations solved the Moon-forming problem by saying it only took 30 My, but without clues why this time changed. Worse, there are reasons to believe Earth had to form within about 1 My of stage 2 because it has xenon and krypton that had to come from the accretion disk. Finally, in the asteroid belt there is evidence of some previous collisions between asteroids. What happens is they make families of much smaller objects. In short, the asteroids shatter into many pieces upon such collisions. There is no reason to believe that similar collisions much earlier would be any different.

The oldest objects in the solar system are either calcium aluminium inclusions or iron meteorites. Their ages can be determined by various isotope decays and both had to be formed in very hot regions. The CAIs are found in chondrites originating from the asteroid belt, but they needed much greater heat to form than was there in stage 2. Similarly, iron meteorites had to form at a temperature sufficient to melt iron. So, how did they get that hot and not fall into the sun? The only time the accretion disk got sufficiently hot at a reasonable distance from the sun was when the star was accreting in stage 1. In my opinion, this shows the calculations were wrong, presumably because they missed something. Worse, to have enough material to make the giants, about a third of the stellar mass has to be in the disk, but observation of other disks in stage 2 shows there is simply not enough mass to make the giants.

The basic argument I make is that whatever was formed in the late stages of stellar accretion stayed more or less where it was. One of the puzzles of the solar system is that most of the mass is in the star, but most of the angular momentum resides in the planets, and since angular momentum has to be conserved and since most of that was with the gas initially, my argument is any growing solids took angular momentum from the gas, which sends then mass further from the star, and it had to be taken before the star stopped accreting. (I suggest a mechanism in my ebook.)

Now to how the rocky planets formed. During primary stellar accretion, temperatures reached about 1300 degrees C where Mars would form and 1550 degrees C a little beyond where Earth would grow. This gives a possible mechanism for accretion of dust. At about 800 degrees C silicates start to get sticky, so dust can accrete into small stones there, and larger ones closer to the star. There are a number of different silicates, all of which have long polymers, but some, especially aluminosilicates are a little more mobile than others. At about 1300 degrees C, calcium silicate starts to phase separate out, and about 1500 degrees C various aluminosilicates phase separate. This happens because the longer the polymer, the more immiscible it is in another polymer melt (a consequence of the first two laws of thermodynamics, and which makes plastics recycling so difficult.) If this were the only mechanism for forming rocky planets, the size of the finished planet would diminish significantly with distance from the star. Earth, Venus and Mercury are in the wrong order. Mercury may have accreted this way, but further out, stones or boulders would be the biggest objects.

Once primary stellar accretion ends, temperatures were similar to what they are now. Stones collide, but with temperatures like now, they initially only make dust. There is no means of binding silicates through heat. However, if stones can come together, dust can fill the spaces. The key to rocky planet formation is that calcium silicate and calcium aluminosilicates could absorb water vapour from the disk gases, and when they do that, they act as cements that bind the stones together to form a concrete. The zone where the aluminosilicates start to get formed is particularly promising for absorbing water and setting cement, and because iron starts to form bodies here, lumps of iron are also accreted. This is why Earth has an iron core and plenty of water. Mars has less water because calcium silicate absorbs much less water, and its iron is mainly accreted as fine dust.

Finally, Mars is smaller because the solids density is less, and the disk is cleared before it has time to fully grow. The evidence for the short-lived disk is from the relatively small size of Jupiter compared with corresponding planets around similar sized stars that our sun cleared out the accretion disk sooner than most. This is why we have rocky planets, and not planets like the Neptune-sized planets in the so-called habitable zone around a number of stars. Venus is smaller than Earth because it was harder to get going, through the difficulty of water setting the cement, which is partly why it has very little water on its surface. However, once started it grows faster since the density of basaltic rocks is greater. Mercury is probably smaller still because it formed a slightly different way, through excessively mobile silicates in the first stage of the accretion disk, and by later being bombed by very large rocky bodies that were more likely to erode it. That is somewhat similar to the standard explanation of why Mercury is small but has a large iron core. The planets grow very quickly, and soon gravity binds all dust and small stones, then as it grows, gravity attracts objects that have grown further away, which perforce are large, but still significantly smaller than the main body in the zone.

Next post: how these rocky planets started to evolve to where they are now.