One of the problems with modern science is that once a paradigm has been selected, a layer of “authorities” is set up, and unless the scientist adopts the paradigm, little notice is taken of him or her. This is where conferences become important, because there is an audience that is more or less required to listen. The problem then for the person who has a different view is to show why that view is important enough to be considered. The barrier is rightly high. A new theory MUST do something the old one did not do, and it must not be contradicted by known facts. As I said, a high barrier.
In the previous post, I argued that the chemicals required for life did not come from carbonaceous chondrites or comets, and that is against standard thought. Part of the reason this view is held is that the gases had to come from somewhere, so from where? There are two obvious possible answers. The first is the gases were accreted with the planet as an atmosphere. In this hypothesis, the Earth formed while the disk gases were still there and simple gravity held them. Once the accretion disk was removed by the star, the hydrogen and helium were lost to space because Earth’s gravity was not strong enough, but other gases were retained. This possibility is usually rejected, and in this case the rejection is sound.
The first part of the proposition was almost certainly correct. Gases would have been accreted from the stellar disk, even on rocky planets, and these gases were largely hydrogen and helium. The next part is also correct. Once the disk gases were removed, that hydrogen and helium would be lost to space because Earth’s gravity was not strong enough to hold it. However, the question then is, how was it lost? As it happens, insufficient gravity was not the primary cause, and the loss was much faster than simply seeping off into space. Early in the life of a new star there are vicious solar winds and extreme UV radiation. It is generally accepted that such radiation would boil off the hydrogen and helium, and these would be lost so quickly that the other gases would be removed by hydrodynamic drag, and only some of the very heavier gases, such as krypton and xenon could remain. There is evidence to support this proposal, in that for krypton and xenon higher levels of heavier isotopes are observed. This would happen if most of these gases were removed from the top of the atmosphere, and since the lighter isotopes would preferentially find their way there, they would be removed preferentially. Since this is not observed for neon or argon isotopes, the argument is that all neon and argon in the atmosphere was lost this way, and if so, all nitrogen and carbon oxides, together with all water in the atmosphere would be lost. Basically, apart from the amount of krypton and xenon currently in the atmosphere, there would be no other gases. The standard theory of planetary formation has it that the Earth was a ball of magma, and if so, all water on the surface would be in the gas phase, so for quite some time Earth would be a dry lump of rock with an atmosphere that had a pressure that would be so low only the best vacuum pumps today could match it.
There could be the objection that maybe the star was not that active and we did retain some gases. After all, we weren’t around to check. Can you see why not? I’ll give the reason shortly. However, if we accept that the gases could not have come from the accretion disk, the other alternative is they came from below the ground, i.e. they were emitted by volacanic activity. How does that stand up?
One possibility might be that gases, including water, were adsorbed on the dust, then subsequently emitted by volcanoes. You might protest that if the Earth was a magma ocean, all that water would be immediately ejected from the silicates as a gas, but it turns out that while water is insoluble in silica at surface pressures, at pressures of 5000 atmospheres, granitic magma can dissolve up to 10% water at 1100 degrees C, at least according to Wikipedia. Irrespective of the accuracy of the figures, high temperature silicates under pressure most certainly dissolve water, and it probably hydrolyses the silicate structure and makes it far less viscous. It has been estimated that the water remaining in the mantle is 100 times greater than the current oceans so there is no problem in expecting that the oceans were initially emitted by volcanic activity. As an aside, deep in the mantle the pressures are far greater than 5000 atmospheres. This water is also likely to be very important for another reason, namely reducing the viscosity and lowering the magma density. This assists pull subduction, where the dry, or drier, basalt from the surface is denser than the other material around it and hence descends into the mantle. If the water were not there, we would not have plate tectonics, and if there were no plate tectonics, there would be no recycling of carbon dioxide, so eventually all the carbon dioxide on the surface would be converted to lime and there would be nothing for plants to use. End of life!
However, we know that our atmospheric gases were not primarily adsorbed as dust. How do we know that? In the accretion disk the number of nitrogen atoms is roughly the same as the number of neon atoms, and their heats of adsorption on dust are roughly the same. The only plausible physical means of separating them in the accretion disk is selective sublimation from ice, but ice simply could not survive where Earth formed. So, if our nitrogen came from the disk by simple physical means, then we would have roughly the same amount of neon in our atmosphere as nitrogen. We don’t, and the amount of neon we have is a measure of the amount of gas we have from such adsorption. Neon is present at 0.0018%, which is not very much.
So, in answer to the initial question, for a period there was effectively no atmosphere. To go any further we have to consider how the planets formed, and as some may suspect, I do not accept the standard theory for reasons that will become apparent in the next post.
Meanwhile, may I remind readers that my ebooks on Smashwords are on discount through July. Links to novels:
Puppeteer: http://www.smashwords.com/books/view/69696
‘Bot War: https://www.smashwords.com/books/view/677836
Troubles: https://www.smashwords.com/books/view/174203
Meanwhile, if you want to know scientifically about biofuels: