A Plan to Counter Global Warming Must be Possible to Implement

Politicians seem to think that once there is a solution to the problem in theory, the problem is solved so they stop thinking about it. Let us look at a reality. We know we have a problem with global warming and we have to stop burning fossil fuels. The transport sector is a big problem, but electric vehicles will do the trick, and in theory that might be true, but as I have pointed out in previous posts there is this troublesome matter of raw materials. Now the International Energy Agency has brought a little unpleasantness to the table. They have reported that global battery and minerals supply chains need to expand ten-fold to meet the critical needs of 2030 if the plan is to at least maintain schedule. If we take the average size of a major producer as a “standard mine” according to the IEA we need 50 more such lithium mines, 60 more nickel mines, and 17 more cobalt mines operating fully by 2030. Generally speaking, a new mine needs about ten years between starting a feasibility study and serious production. See a problem here? Because of the costs and exposure, you need feasibility studies to ensure that there is sufficient ore where you can’t see, that there is an economic way of processing the ore, and you must have a clear plan on what to do with what to do with minerals you do not want, with materials like arsenates or other undesirables also being present. You also have to build new roads, pipe in water, provide electricity, and do a number of other things to make the mine work that are not directly part of the mine. This does not mean you cannot mine, but it does mean it won’t be quite as easy as some might have you think. We now want our mines not to be environmental disasters. The IEA report notes that ten years, and then adds several more years to get production up to capacity.

The environmental issues are not to be considered as irrelevant. Thus the major deposits of lithium tend to be around the Andes, typically in rather dry areas. Then lithium is obtained by pumping down water, dissolving the salts, then bringing them up and evaporating the brine. Once most of the lithium is obtained, something has to be done with the salty residue, and of course the process needs a lot of water. The very limited water already in some locations is badly needed by the local population and their farms. The salt residues would poison agriculture.

If we consider nickel, one possible method to get more from poorer ores is high-pressure acid leaching. The process uses acid at high temperatures and pressure and end up with nickel at a grade suitable for batteries. But nickel often occurs as a sulphide, which means as a byproduct you get hydrogen sulphide, and a number of other effluents that have to be treated. Additionally, the process requires a lot of heat, which means burning coal or oil. The alternative source to the sulphide deposits, as advocated by the IEA, is laterite, a clayish material that also contains a lot of iron and aluminium oxides. These metals could also be obtained, but at a cost. The estimate of getting nickel by this process is to double the cost of the nickel.

The reason can be seen from the nature of the laterite (https://researchrepository.murdoch.edu.au/id/eprint/4340/1/nickel_laterite_processing.pdf), which is a usually a weathered rock. At the top you have well weathered rock, more a clay, and is red limonite. The iron oxide content (the cause of the red colour) is over 50% while the nickel content is usually less than 0.8% and the cobalt less than 0.1%. Below that is yellow limonite, where the nickel and cobalt oxides double their concentration. Below that we get saprolite/serpentine/garnierite (like serpentine but with enhanced nickel concentration). These can have up to 3% nickel, mainly due to the garnierite, but the serpentine family are silicates, where the ferrous such as in olivine has been removed. The leaching of a serpentine is very difficult simply because silicates are very resistant. Try boiling your average piece of basalt in acid. There are other approaches and for those interested, the link above shows them. However, the main point is that much of the material does not contain nickel. Do y9ou simply dump it, or produce iron at a very much higher cost than usual?

However, the major problems for each are they are all rather energy intensive, and the whole point of this is to reduce greenhouse emissions. The acid leach is very corrosive, and hence maintenance is expensive, while the effluents are troublesome for disposal. The disposal of the magnesium sulphate at sea is harmless, but the other materials with it may not be. Further, if the ore is somewhere like the interior of Australia, even finding water will be difficult.

Of course all these negatives can be overcome, with effort, if we are prepared to pay the price. Now, look around and ask yourself how much effort is going into establishing all those mines that are required? What are the governments doing? The short answer, as far as I can tell, is not much. They leave it to private industry. But private industry will be concerned that their balance sheets can only stand so much speculative expansion. My guess is that 2030 objectives will not be fulfilled.