Where are the Planets that Might Host Life?

In the previous posts I showed why RNA was necessary for primitive life to reproduce, but the question then is, what sort of planets will have the necessary materials? For the rocky planets, once they reached a certain size they would attract gas gravitationally, but this would be lost after the accretion disk was removed by the extreme UV put out by the new star. Therefore all atmosphere and surface water would be emitted volcanically. (Again, for the purposes of discussion, volcanic emission includes all geothermal emissions, e.g. from fumaroles.) Gas could be adsorbed on dust as it was accreted, but if it were, because heats of adsorption of the gases other than water are very similar, the amount of nitrogen would roughly equal the amount of neon. It doesn’t. (Neon is approximately at the same level as nitrogen in interstellar gas.)

The standard explanation is that since the volatiles could not have been accreted, they were delivered by something else. The candidates: comets and carbonaceous asteroids. Comets are eliminated because their water contains more deuterium than Earth’s water, and if they were the source, there would be twenty thousand times more argon. Oops. Asteroids can also be eliminated. At the beginning of this century it was shown that various isotope ratios of these bodies meant they could not be a significant source. In desperation, it was argued they could, just, if they got subducted through plate tectonics and hence were mixed in the interior. The problem here is that neither the Moon nor Mars have subduction, and there is no sign of these objects there. Also, we find that the planets have different atmospheres. Thus compared to Earth, Venus has 50% more carbon dioxide (if you count what is buried as limestone on Earth), four times more nitrogen, and essentially no water, while Mars has far less volatiles, possibly the same ratio of carbon dioxide and water but it has far too little nitrogen. How do you get the different ratios if they all came from the same source? It is reasonably obvious that no single agent can deliver such a mix, but since it is not obvious what else could have led to this result, people stick with asteroids.

There is a reasonably obvious alternative, and I have discussed the giants, and why there can be no life under-ice on Europa https://wordpress.com/post/ianmillerblog.wordpress.com/855) and reinforced by requirement to join ribose to phosphate. The only mechanism produced so far involves the purine absorbing a photon, and the ribose transmitting the effect. Only furanose sugars work, and ribose is the only sugar with significant furanose form in aqueous solution. There is not sufficient light under the ice. There are other problems for Europa. Ribose is a rather difficult sugar to make, and the only mechanism that could reasonably occur naturally is in the presence of soluble silicic acid. This requires high-temperature water, and really only occurs around fumaroles or other geothermal sites. (The terrace formations are the silica once it comes out of solution on cooling.)

So, where will we find suitable planets? Assuming the model is correct, we definitely need the dust in the accretion disk to get hot enough to form carbides, nitrides, and silicates capable of binding water. Each of those form at about 1500 degrees C, and iron melts at a bit over this temperature, but it can be lower with impurities, thus grey cast is listed as possible at 1127 degrees C. More interesting, and more complicated, are the silicates. The calcium aluminosilicates have a variety of phases that should separate from other silicate phases. They are brittle and can be easily converted to dust in collisions, but their main feature is they absorb water from the gas stream and form cements. If aggregation starts with a rich calcium aluminosilicate and there is plenty of it, it will phase separate out and by cementing other rocks and thus form a planet with plenty of water and granitic material that floats to the surface. Under this scene, Earth is optimal. The problem then is to get this system in the habitable zone, and unfortunately, while both the temperatures of the accretion disk and the habitable zone depend on the mass of the star, they appear to depend on different functions. The net result is the more common red dwarfs have their initial high-temperature zone too close to the star, and the most likely place to look for life are the G- and heavy K-type stars. The function for the accretion disk temperature depends on the rate of stellar accretion, which is unknown for mature stars but is known to vary significantly for stars of the same mass, thus LkCa 15b is three times further away than Jupiter from an equivalent mass star. Further, the star must get rid of its accretion disk very early or the planets get too big. So while the type of star can be identified, the probability of life is still low.

How about Mars? Mars would have been marginal. The current supply of nitrogen, including what would be lost to space, is so low life could not emerge, but equally there may be a lot of nitrogen in the solid state buried under the surface. We do not know if we can make silicic acid from basalt under geochemical conditions and while there are no granitic/felsic continents there, there are extrusions of plagioclase, which might do. My guess is the intermittent periods of fluid flow would have been too short anyway, but it is possible there are chemical fossils there of what the path towards life actually looked like. For me, they would be of more interest than life itself.

To summarise what I have proposed:

  • Planets have compositions dependent on where they form
  • In turn, this depends on the temperatures reached in the accretion disk
  • Chemicals required for reproduction formed at greater than 1200 degrees C in the accretion disk, and possibly greater than 1400 degrees C
  • Nucleic acids can only form, as far as we know, through light
  • Accordingly, we need planets with reduced nitrogen, geothermal processing, and probably felsic/granitic continents that end in the habitable zone.
  • The most probable place is around near-earth-sized planets around a G or heavy K type star
  • Of those stars, only a modest proportion will have planets small enough

Thus life-bearing planets around single stars are likely to be well-separated. Double stars remain unknown quantities regarding planets. This series has given only a very slight look at the issues. For more details, my ebook Planetary Formation and Biogenesis(http://www.amazon.com/dp/B007T0QE6I) has far more details.

Advertisements

Processing Minerals in Space

I have seen some recent items on the web that state that asteroids are full of minerals and fortunes await. My warning is, look deeper. The reason is, most asteroids have impact craters, and from basic physics but some rather difficult calculations you can show these were formed from very energetic collisions. That the asteroid did not fly to bits indicates it is a solid with considerable mechanical strength. That implies the original dust either melted to form a solid, or a significant chemical reaction took place. For those who have read my “Planetary Formation and Biogenesis” you will know why they melted, assuming I am right. So what has that got to do with things? Quite simply, leaving aside metals like gold, the metal oxides in molten silica form the olivine or pyroxene families, or aluminosilicates. That is they form rocks. To give an example of the issue, I recently read a paper where various chondrites were analysed, and the method of analysis recorded the elements separately. The authors were making much of the fact that the chondrites contained 19% iron. Yikes! But wait. Fayalite contains almost 55% iron by weight, but it is useless as an ore. The olivine and pyroxene structures have tetrahedral silicon oxides (the pyroxene as a strand polymer) where the other valence of the oxygen is bound to a divalent cation, mostly magnesium because magnesium is the most common divalent element in the supernova dust. What these authors had done was to analyse rock.

If you read my previous post you will see that I have uncovered yet another problem with science: the authors were very specialized but they went outside their sphere of competency, quite accidentally. They cited numbers because so much in science depends on numbers. But it is also imperative to know what the numbers mean.

On Earth, most of the metals we obtain come from ores, which have formed through various forms of geochemical processing. Thus to get iron, we usually process haematite, which is an iron oxide, but the iron almost certainly started as an average piece of basalt that got weathered. It is most unlikely that good deposits of haematite will be found on asteroids, although it is possible on Mars where small amounts have been found. If Mars is to be settled, processing rocks will be mandatory for survival but the problems are different from those of asteroids. For this post, I wish to restrict myself to discussing asteroids as a source of metals. Let us suppose an asteroid is collected and brought to a processing site, the question is, what next?

The first problem is size-reduction, i.e.breaking it down to more manageable pieces. How do you do that? If you hit it with something, you immediately separate, following Newton’s third law. If you want to see the difficulties, stand on a small raft and try to keep on hitting something. Ah, you say, anchor yourself. How? You have to put something like a piton into solid rock, and how do you do that without some sort of impact? Of course it can be done, but it is not easy. Now you start smashing it. What happens next is bits of asteroid fly off into space. Can you collect all of the pieces? If not, you are a menace because the asteroid’s velocity v, which will be in the vicinity of 30 km/s if near Earth, has to be added to whatever is given to the fragments. Worse, they take on the asteroid’s eccentricity ε(how much difference there is between closest and farthest distance from the sun) and whatever eccentricity has been added by the fragmentation. This is important because the relative velocity of impact assuming the target is on a circular orbit is proportional to εv. Getting hit by a rock at these sort of velocities is no joke.

However, suppose you collect all the rock, you have two choices: you can process the rock as is, or you can try to refine it. If you adopt the latter idea, how do you do it? On Earth, such processing arises through millions of years of action with fluids, or through superheated fluids passing through high temperature rock. That does not sound attractive. Now some asteroids are argued to have iron cores so the geochemical processing has been done for you. Of course you still have to work your way through the rock, and then you have to size reduce the iron, which again raises the question, how? There is also a little less good news awaiting you: iron cores are almost certainly not pure iron. The most likely composition is iron with iron silicide, iron phosphide, iron carbide and a lot of iron sulphide. There will also be some nickel, together with corresponding compounds, and (at last joy?) certain high value metals that dissolve in iron. So what do you do with this mess?

Then, supposing you separate out a pure chemical compound, how do you get the metal out? The energy input required can be very large. Currently, there is a lot of effort being put into removing CO2from the atmosphere. The reason we do not pull it apart and dump the carbon is that all the energy liberated from burning it has to be replaced, i.e.a little under 400 kJ/mol. and that is such a lot of energy. Consider that as a reference unit. It takes roughly two such units to get iron from iron oxide, although you do get two iron atoms. It takes about five units to break forsterite into two magnesium atoms and one silicon. It takes ten such units to break down kaolinite to get two aluminium atoms and two silicon atoms. Breaking down rock is very energy intensive.

People say, electrolysis. The problem with electrolysis is the material has to dissolve in some sort of solvent and then be separated into ions. Thus when making aluminium, bauxite, an aluminium oxide is used. Clays, which are aluminosilicates such as kaolinite or montmorillinite, are not used, despite being much cheaper and more easily obtained. In asteroids any aluminium will almost certainly be in far more complicated aluminosilicates. Then there is the problem of finding a solvent for electrolysis. For the least active metals, such as copper, water is fine, but that will not work for the more active ones, such as aluminium. Titanium would be even more difficult to make, as it is made from the reduction of titanium tetrachloride with magnesium. You have to make all the starting materials!

On Earth, many oxides are reduced to metal by heating with carbon (usually very pure coal) and allow the carbon to take the oxygen and disappear as a gas. The problem with that, in space, is there is no readily available source of suitable carbon. Carbonaceous chondrites have quite complicated molecules. The ancients used charcoal, and while this is NOT pure carbon, it is satisfactory because the only other element there in volume tends to be oxygen. (Most charcoal is about 35% oxygen.) The iron in meteors could certainly be useful, but for some other valuable elements, such as platinum, while it may be there as the element, it will probably be scattered through the matrix and be very dilute.

Undoubtedly there will be ways to isolate such elements, but such methods will probably be somewhat different from what we use. In some of my novels I have had fusion power tear the molecules to atoms, ionise them, and separate out the elements in a similar way to how a mass spectrometer works, that is they are accelerated and then bent with powerful electromagnetic fields. The “bend” in the subsequent trajectory depends on the mass of the ions, so each isotope is separated. Yes, that is fiction, but whatever is used would probably seem like fiction now. Care should be taken with any investment!

Space Mining

Most readers will have heard that there are a number of proposals to go mine asteroids, or maybe Mars. The implication is that Earth will become short of resources, so we can mine things in space. However, if we mine there for the benefit here, how would we get such resources here, and in what form. If the resources are refined elsewhere, then there is the “simple” cost of getting them here. If we bring them down in a shuttle, we have to get the shuttle back up there, and the cost is huge. If on the other hand, we drop them (and gravity is cheap) we have to stop whatever we send from burning up in the atmosphere, so to control the system we have to build some sort of spacecraft out there to bring them down. Overall, this is unlikely to be profitable. On the other hand if we build structures in space, such as space stations, or on Mars for settlers, then obviously it is very much cheaper to use local resources, if we can refine them there.

So, what are the local resources? The answer is it depends on the history. All the solid elements are expelled in novae (light elements only) or supernovae (all). The very light elements lithium, beryllium and boron are rather rare because they tend to be destroyed in the star before the explosion. The elements vary in relative amounts made, and basically the heavier the element the less is made, and elements with an even number of protons are more common than elements with odd numbers. Iron, and to some extent nickel, are more common than those around them because the nuclei are particularly stable. The most common elements are magnesium, silicon and with iron about 10% less. Sulphur is about half as common, calcium and aluminium are about 6 – 8% as common as silicon, while the metals such as copper and zinc are about 100,000 times less common than aluminium. The message from all that is that unless there is some process that has sorted the various elements, an object in space is likely to have the composition of dust, which are mainly silicates, i.e. rock. There may well be metal sulphides as well, as there is a lot of sulphur there.

So what sorting could there be? The most obvious is that if the body formed close enough to the star during primary accretion, the heat in the accretion disk could be sufficient to melt the element, if it were there as an element. It appears that iron was, because we get iron meteorites and iron-cored meteorites. The accretion disk, of course, was primarily hydrogen, and at the melting point of iron, hydrogen will reduce iron oxides to iron, also making water. So we could expect asteroids to have iron cores? Well, we are sure most members of the asteroid belt do not, and the reason why not is presumably it did not get hot enough to melt iron where they formed. However, since the regolith (fine “soil”) on the Moon has iron dust in it, perhaps there was iron dust where the asteroids formed. However, the problem is what caused them to solidify. If they melted, steam would be created, and that would oxidise iron dust, so the iron then would be as an oxide, or a silicate.

The ores we have on Earth are there due to geochemical processing. For example, in the mantle, water forms a supercritical fluid that dissolves all sorts of things, including silica and gold. When this comes to the surface, it cools and deposits its solids, which is why gold is found in some quartz veins. The big iron oxide deposits we have were formed through carbon dioxide weathering iron-containing silicates (such as olivine and pyroxene) to make ferrous and magnesium solutions in the oceans. When oxygen came along, the ferrous precipitated to form goethite and haematite, which we now mine. All the ore deposits on Earth are there because of geochemical processing.

There will be limited such processing on Mars, and on the Moon. Thus on the Moon, as it cooled some materials crystallised out before others. The last to crystallise on the Moon was what we call KREEP, which stands for potassium, rare earths and phosphate, which is what it largely comprises. There is also anorthite, a calcium aluminosilicate on the Moon. As for Mars, it seems to be mainly basaltic, which means it is mainly iron magnesium silicate. The other elements will be there, of course, mixed up, but how do you get them out? Then there is the problem of chemical compatibility. Suppose you want rare earths? The rare earths are not that rare, actually, and are about as common as copper. But copper occurs in nice separate ores, at least on Earth, but rare earths have chemical properties somewhat similar to aluminium. For every rare earth atom, there are 100,000 aluminium atoms, all behaving similarly, although not exactly the same. So it is far from easy to separate them from the aluminium, then there is the problem of separating them from each other.

There is what I consider a lot of nonsense spoken about asteroids. Thus one was reported to be “mainly diamond”. On close questioning, it had an infrared signature typical of carbon. That would be typically amorphous graphitic carbon, and no, they did not know specifically it was diamond. Another proposal was to mine asteroids for iron. There may well be some with an iron core, and Vesta probably does have such a core, but most do not. I have heard some say there will be lots of platinum there. Define lots, because unless there has been some form of sorting, it will be there proportionately to its dust concentration, and while there is more than in most bits of basalt, there will still be very little. In my opinion, beware of investment opportunities to get rich quickly through space mining.

Book Discount

From February 14 – 21, (Seattle time) “Red Gold” will be discounted to 99c/99p. In the previous post, I gave a rather frivolous scam possibility related to space exploration. Try something a little more serious.

 

Mars is to be colonized. The hype is huge, the suckers will line up, and we will control the floats. There is money to be made, and the beauty is, nobody on Earth can check what is really going on on Mars.

Partly inspired by the 1988 crash, Red Gold shows the anatomy of one sort of fraud. Then there’s Mars, and where The Martian showed the science behind one person surviving for a modest period, Red Gold shows the science needed for many colonists to survive indefinitely. As a bonus there is an appendix that shows how the writing of this novel led to a novel explanation for the presence of Martian rivers.

If you liked The Martian where science allowed one person to survive then Red Gold is a thriller that has a touch of romance, a little economics and enough science to show how Mars might be colonised and the colonists survive indefinitely.

http://www.amazon.com/dp/B009U0458Y

Origin of the Rocky Planet Water, Carbon and Nitrogen

The most basic requirement for life to start is a supply of the necessary chemicals, mainly water, reduced carbon and reduced nitrogen on a planet suitable for life. The word reduced means the elements are at least partly bound with hydrogen. Methane and ammonia are reduced, but so are hydrocarbons, and aminoacids are at least partly reduced. The standard theory of planetary formation has it (wrongly, in my opinion) that none of these are found on a rocky planet and have to come from either comets, or carbonaceous asteroids. So, why am I certain this is wrong? There are four requirements that must be met. The first is, the material delivered must be the same as the proposed source; the second is they must come in the same proportions, the third is the delivery method must leave the solar system as it is now, and the fourth is that other things that should have happened must have.

As it happens, oxygen, carbon, hydrogen and nitrogen are not the same through the solar system. Each exists in more than one isotope (different isotopes have different numbers of neutrons), and the mix of isotopes in an element varies in radial distance from the star. Thus comets from beyond Neptune have far too much deuterium compared with hydrogen. There are mechanisms by which you can enhance the D/H ratio, such as UV radiation breaking bonds involving hydrogen, and hydrogen escaping to space. The chemical bonds to deuterium tend to be several kJ/mol. stronger than bonds to hydrogen. The chemical bond strength is actually the same, but the lighter hydrogen has more zero point energy so it more easily breaks and gets lost to space. So while you can increase the deuterium to hydrogen ratio, there is no known way to decrease it by natural causes. The comets around Jupiter also have more deuterium than our water, so they cannot be the source. The chondrites have the same D/H ratio as our water, which has encouraged people to believe that is where our water came from, but the nitrogen in the chondrites has too much 15N, so it cannot be the source of our nitrogen. Further, the isotope ratios of certain heavy elements such as osmium do not match those on Earth. Interestingly, it has been argued that if the material was subducted and mixed in the mantle, it would be just possible. Given that the mantle mixes very poorly and the main sources of osmium now come from very ancient plutonic extrusions, I have doubts on that.

If we look at the proportions, if comets delivered the water or carbon, we should have five times more nitrogen, and twenty thousand times more argon. Comets from the Jupiter zone get around this excess by having no significant nitrogen or argon, and insufficient carbon. For chondrites, there should be four times as much carbon and nitrogen to account for the hydrogen and chlorine on Earth. If these volatiles did come from chondrites, Earth has to be struck by at least 10^23 kg of material (that is, ten followed by 23 zeros). Now, if we accept that these chondrites don’t have some steering system, based on area the Moon should have been struck by about 7×10^21 kg, which is approximately 9.5% of the Moon’s mass. The Moon does not subduct such material, and the moon rocks we have found have exactly the same isotope ratios as Earth. That mass of material is just not there. Further, the lunar anorthosite is magmatic in origin and hence primordial for the Moon, and would retain its original isotope ratios, which should give a set of isotopes that so not involve the late veneer, if it occurred at all.

The third problem is that we are asked to believe that there was a narrow zone in the asteroid belt that showered a deluge of asteroids onto the rocky planets, but for no good reason they did not accrete into anything there, and while this was going on, they did not disturb the asteroids that remain, nor did they disturb or collide with asteroids closer to the star, which now is most of them. The hypothesis requires a huge amount of asteroids formed in a narrow region for no good reason. Some argue the gravitational effect of Jupiter dislodged them, but the orbits of such asteroids ARE stable. Gravitational acceleration is independent of the body’s mass, and the remaining asteroids are quite untroubled. (The Equivalence Principle – all bodies fall at the same rate, other than when air resistance applies.)

Associated with this problem is there is a number of elements like tungsten that dissolve in liquid iron. The justification for this huge barrage of asteroids (called the late veneer) is that when Earth differentiated, the iron would have dissolved these elements and taken them to the core. However, they, and iron, are here, so it is argued something must have brought them later. But wait. For the isotope ratios this asteroid material has to be subducted; for them to be on the continents, they must not be subducted. We need to be self-consistent.

Finally, what should have happened? If all the volatiles came from these carbonaceous chondrites, the various planets should have the same ratio of volatiles, should they not? However, the water/carbon ratio of Earth appears to be more than 2 orders of magnitude greater than that originally on Venus, while the original water/carbon ratio of Mars is unclear, as neither are fully accounted for. The N/C ratio of Earth and Venus is 1% and 3.5% respectively. The N/C ratio of Mars is two orders of magnitude lower than 1-2%. Thus if the atmospheres came from carbonaceous chondrites:

Only the Earth is struck by large wet planetesimals,

Venus is struck by asteroidal bodies or chondrites that are rich in C and especially rich in N and are approximately 3 orders of magnitude drier than the large wet planetesimals,

Either Earth is struck by a low proportion of relatively dry asteroidal bodies or chondrites that are rich in C and especially rich in N and by the large wet planetesimals having moderate levels of C and essentially no N, or the very large wet planetesimals have moderate amounts of carbon and lower amounts of nitrogen as the dry asteroidal bodies or chondrites, and Earth is not struck by the bodies that struck Venus,

Mars is struck only infrequently by a third type of asteroidal body or chondrite that is relatively wet but is very nitrogen deficient, and this does not strike the other bodies in significant amounts,

The Moon is struck by nothing,

See why I find this hard to swallow? Of course, these elements had to come from somewhere, so where? That is for a later post. In the meantime, see why I think science has at times lost hold of its methodology? It is almost as if people are too afraid to go against the establishment.

Martian Fluvial Flows, Placid and Catastrophic

Image

Despite the fact that, apart localized dust surfaces in summer, the surface of Mars has had average temperatures that never exceeded about minus 50 degrees C over its lifetime, it also has had some quite unexpected fluid systems. One of the longest river systems starts in several places at approximately 60 degrees south in the highlands, nominally one of the coldest spots on Mars, and drains into Argyre, thence to the Holden and Ladon Valles, then stops and apparently dropped massive amounts of ice in the Margaritifer Valles, which are at considerably lower altitude and just north of the equator. Why does a river start at one of the coldest places on Mars, and freeze out at one of the warmest? There is evidence of ice having been in the fluid, which means the fluid must have been water. (Water is extremely unusual in that the solid, ice, floats in the liquid.) These fluid systems flowed, although not necessarily continuously, for a period of about 300 million years, then stopped entirely, although there are other regions where fluid flows probably occurred later. To the northeast of Hellas (the deepest impact crater on Mars) the Dao and Harmakhis Valles change from prominent and sharp channels to diminished and muted flows at –5.8 k altitude that resemble terrestrial marine channels beyond river mouths.

So, how did the water melt? For the Dao and Harmakhis, the Hadriaca Patera (volcano) was active at the time, so some volcanic heat was probably available, but that would not apply to the systems starting in the southern highlands.

After a prolonged period in which nothing much happened, there were catastrophic flows that continued for up to 2000 km forming channels up to 200 km wide, which would require flows of approximately 100,000,000 cubic meters/sec. For most of those flows, there is no obvious source of heat. Only ice could provide the volume, but how could so much ice melt with no significant heat source, be held without re-freezing, then be released suddenly and explosively? There is no sign of significant volcanic activity, although minor activity would not be seen. Where would the water come from? Many of the catastrophic flows start from the Margaritifer Chaos, so the source of the water could reasonably be the earlier river flows.

There was plenty of volcanic activity about four billion years ago. Water and gases would be thrown into the atmosphere, and the water would ice/snow out predominantly in the coldest regions. That gets water to the southern highlands, and to the highlands east of Hellas. There may also be geologic deposits of water. The key now is the atmosphere. What was it? Most people say it was carbon dioxide and water, because that is what modern volcanoes on Earth give off, but the mechanism I suggested in my “Planetary Formation and Biogenesis” was the gases originally would be reduced, that is mainly methane and ammonia. The methane would provide some sort of greenhouse effect, but ammonia on contact with ice at minus 80 degrees C or above, dissolves in the ice and makes an ammonia/water solution. This, I propose, was the fluid. As the fluid goes north, winds and warmer temperatures would drive off some of the ammonia so oddly enough, as the fluid gets warmer, ice starts to freeze. Ammonia in the air will go and melt more snow. (This is not all that happens, but it should happen.)  Eventually, the ammonia has gone, and the water sinks into the ground where it freezes out into a massive buried ice sheet.

If so, we can now see where the catastrophic flows come from. We have the ice deposits where required. We now require at least fumaroles to be generated underneath the ice. The Margaritifer Chaos is within plausible distance of major volcanism, and of tectonic activity (near the mouth of the Valles Marineris system). Now, let us suppose the gases emerge. Methane immediately forms clathrates with the ice (enters the ice structure and sits there), because of the pressure. The ammonia dissolves ice and forms a small puddle below. This keeps going over time, but as it does, the amount of water increases and the amount of ice decreases. Eventually, there comes a point where there is insufficient ice to hold the methane, and pressure builds up until the whole system ruptures and the mass of fluid pours out. With the pressure gone, the remaining ice clathrates start breaking up explosively. Erosion is caused not only by the fluid, but by exploding ice.

The point then is, is there any evidence for this? The answer is, so far, no. However, if this mechanism is correct, there is more to the story. The methane will be oxidised in the atmosphere to carbon dioxide by solar radiation and water. Ammonia and carbon dioxide will combine and form ammonium carbonate, then urea. So if this is true, we expect to find buried where there had been water, deposits of urea, or whatever it converted to over three billion years. (Very slow chemical reactions are essentially unknown – chemists do not have the patience to do experiments over millions of years, let alone billions!) There is one further possibility. Certain metal ions complex with ammonia to form ammines, which dissolve in water or ammonia fluid. These would sink underground, and if the metal ions were there, so might be the remains of the ammines now. So we have to go to Mars and dig.

 

 

 

 

 

Settling Mars and High Energy Solar Particles

Recently, the US government announced that sending people to Mars was a long-term objective, and accordingly it is worth looking at some of the hazards. One that often gets airing is the fact that the sun sends out bursts of high-energy particles that are mainly protons, i.e. hydrogen atoms with their electrons stripped off. If these strike living matter, they tend to smash the molecules, as they have energy far greater than the energy of the chemical bond. These are of little hazard to us usually, though, because they are diverted by the earth’s magnetic field. It is this solar wind that is the primary cause of auroras. The solar wind particles knock electrons out of gas molecules, and the light is generated when electrons return. As you might guess, if these particles can knock out enough electrons from molecules to generate that light show, the particle flux would be quite undesirable for DNA, and a high cancer rate would be expected if some form of protection could not be provided.

The obvious method is to divert the particles, and electromagnetism provides a solution. When a charged particle is moving and it strikes a magnetic field, there is a force that causes the path of the charged particle to bend. The actual force is calculated through something called a vector cross product, but in simple terms the bending force increases with the velocity of the particle, the strength of the magnetic field, and the angle between the path and the magnetic field. The force is maximum when the path is at right angles to the magnetic field, and is actually zero when the particle motion is parallel to the field. The question then is, can we do anything about the solar particles with this?

The first option would be to generate a magnetic field in Mars. Unfortunately, that is not an option, because we have no idea how to generate a dynamo within the planet, nor do we know if it is actually possible. The usual explanation for the earth’s magnetic field is that it is generated through the earth’s rotation and the iron core. Obviously, there is more to it than that, but one thing we know is that the density of Mars is about 3.9 whereas Earth is about 5.5. Basalt, the most common mix of metal silicates, has a density ranging from 3 to 3.8, but of course density also increases with compression. This suggests that Mars does not have much of an iron core. As far as I am aware, it is also unclear whether the core of Mars is solid or liquid. Accordingly, it appears clear there is no reasonable hope of magnetizing Mars.

The alternative is to put an appropriate magnetic field on the line between Mars and the sun. To do that, we have to put a properly aligned strong magnetic field between Mars and the sun. The problem is, bodies orbiting the sun generally only have the same angular rotation about the sun as Mars if they are at the same distance from the sun as Mars, or on average if they are orbiting Mars, in which case they cannot be between, and if they are not between all the time, they are essentially useless.

However, for the general case where a medium sized body orbits a much larger one, such as a planet around a star, or the Moon around Earth, there are five points where a much smaller object can orbit in a fixed configuration with respect to the other two. These are known as Lagrange points, named after the French mathematician who found them, and the good news is that L1, the first such point, lies directly between the planet and the star. Thus on Mars, a satellite at L1 would always seem to “eclipse” the sun, although of course it would be too small to be noticed.

Accordingly, a solution to the problem of high-energy solar particles on settlers on Mars would be to put a strong enough magnetic field at the Mars sun L1 position, so as to bend the path of the solar particles away from Mars. What is interesting is that very recently Jim Green, NASA Planetary Science Division Director, made a proposal of putting such a magnetic shield at the Mars-Sun-L1 position. For a summary of Green’s proposal, see http://www.popularmechanics.com/space/moon-mars/a25493/magnetic-shield-mars-atmosphere/ .

The NASA proposal was focused more on reducing the stripping of the atmosphere by the solar wind. If so, according to Green, such a shield could help Mars achieve half the atmospheric pressure of Earth in a matter of years, on the assumption that frozen CO2 would sublimate, thus starting the process of terraforming. I am not so sure of that, because stopping radiation hitting Mars should not lead to particularly rapid sublimation. It is true that stopping such charged particles would help in stopping gas being knocked off the outer atmosphere, but the evidence we have is that such stripping is a relatively minor effect.

The other point about this is that I made this suggestion in my ebook novel Red Gold, published in 2011, which is about the colonization of Mars. My idea there was to put a satellite at L1 with solar panels and superconducting magnets. If the magnet coils can be shielded from sunlight, even the high temperature superconductors we have now should be adequate, in which case no cooling might be required. Of course the novel is science fiction, but it is always good to see NASA validate one of your ideas, so I am rather pleased with myself.