A Discovery on Mars

Our space programs now seem to be focusing in the increasingly low concentrations or more obscure events, as if this will tell us something special. Recall earlier there was the supposed finding of phosphine in the Venusian atmosphere. Nothing like stirring up controversy because this was taken as a sign of life. As an aside, I wonder how many people actually have ever noticed phosphine anywhere? I have made it in the lab, but that hardly counts. It is not a very common material, and the signal in the Venusian atmosphere was almost certainly due to sulphur dioxide. That in itself is interesting when you ask how would that get there? The answer is surprisingly simple: sulphuric acid is known to be there, and it is denser, and might form a fog or even rain, but as it falls it hits the hotter regions near the surface and pyrolysis to form sulphur dioxide, oxygen and water. These rise, the oxygen reacts with sulphur dioxide to make sulphur trioxide (probably helped by solar radiation), which in turn reacts with water to form sulphuric acid, which in turn is why the acid stays in the atmosphere. Things that have a stable level on a planet often have a cycle.

In February this year, as reported in Physics World, a Russian space probe detected hydrogen chloride in the atmosphere of Mars after a dust storm occurred. This was done with a spectrometer that looked at sunlight as it passed through the atmosphere, and materials such as hydrogen chloride would be picked up as a darkened line at the frequency for the bond vibration in the infrared part of the spectrum. The single line, while broadened due to rotational options, would be fairly conclusive. I found the article to be interesting for all sorts of reasons, one of which was for stating the obvious. Thus it stated that dust density was amplified in the atmosphere during a global dust storm. Who would have guessed that? 

Then with no further explanation, the hydrogen chloride could be generated by water vapour interacting with the dust grains. Really? As a chemist my guess would be that the dust had wet salt on it. UV radiation and atmospheric water vapour would oxidise that, to make at first sodium hypochlorite, like domestic bleach and then hydrogen.  From the general acidity we would then get hydrogen chloride and probably sodium carbonate dust. They were then puzzled as to how the hydrogen chloride disappeared. The obvious answer is that hydrogen chloride would strongly attract water, which would form hydrochloric acid, and that would react with any oxide or carbonate in the dust to make chloride salts. If that sounds circular, yes it is, but there is a net degradation of water; oxygen or oxides would be formed, and hydrogen would be lost to space. The loss would not be very great, of course, because we are talking about parts per billion in a highly rarefied upper atmosphere and only during a dust storm.

Hydrogen chloride would also be emitted during volcanic eruptions, but that is probably able to be eliminated here because Mars no longer has volcanic eruptions. Fumarole emissions would be too wet to get to the upper atmosphere, and if they occurred, and there is no evidence they still do, any hydrochloric acid would be expected to react with oxides, such as the iron oxide that makes Mars look red, rather quickly.  So the unfortunate effect is that the space program is running up against the law of diminishing returns. We are getting more and more information that involves ever-decreasing levels of importance. Rutherford once claimed that physics was the only science – the rest was stamp collecting.  Well, he can turn in his grave because to me this is rather expensive stamp collecting.

Terraforming Mars

In the 1990s, there was much speculation about terraforming planets, particularly Mars. The idea was that the planet could be converted into something like Earth. To make Mars roughly like Earth, the temperature has to be raised by about ninety Centigrade degrees, atmospheric pressure has to be raised by something approaching a hundred times present pressure, and a lot of water must be found. That presumably comes from buried ice, so besides uncovering it, an enormous amount of heat is required to melt it. The reason Mars is colder is that the sun delivers half the power to Mars than Earth, due to Mars being further away. The gas pressure depends on two things. The first is there has to be enough material, and the second is we have to get it into the gas phase. The most obvious gas is carbon dioxide, because as dry ice, it could be in the solid state, but would be amenable to heating. The problem is, if carbon dioxide is present with a lot of water, it will be absorbed by the water, particularly cold water, and slowly turned into material like dolomite. Nitrogen is the major gas in our atmosphere, but that would be a gas on Mars, and there is very little in the Martian atmosphere.

Why did anyone ever think Terraforming was possible? One reason may be that about 3.6 Gy ago (a gigayear is a thousand million years) it was thought that there were huge rivers on Mars. The Viking images found a huge number of massive river valleys, and so it was thought there had to be sufficient temperatures to melt the water. Subsequent information has suggested that these rivers did not persist over a prolonged wet period, but rather there were intermittent periods where significant flows occurred.  Such rivers probably never flowed for more than a million years or so, and while a million years might seem to be an extremely long period to us, it is trivial in the life of the solar system. Nevertheless the rivers meandered for that period, which is at least suggestive that they were relatively stable for that time, so what went wrong?

When I wrote Red Gold, I needed the major protagonist to make an unexpected discovery to expose a fraud, and it was then that I had an idea. The average temperature on Mars now is -80 degrees C, and while we could imagine some sort of greenhouse effect warming the early Mars, the sun only emitted about two-thirds the energy it does now, so temperature would have been a more severe problem. To me, it was inconceivable that the temperature could get sufficiently above the melting point of ice to give significant flows, but there is one way to make water liquid at -80 degrees C, and that is to have ammonia present. If the volcanoes gave off ammonia as well as water, that would give some greenhouse gas, and the carbon would be present as methane, this being what is called a reducing atmosphere. Sunlight tends to act with water to oxidize things, giving off hydrogen that escapes to space. This has happened extensively on Mars, indeed at many sites where chloride has been deposited on the surface, it has been converted to perchlorate. So methane would oxidize to carbon dioxide, and carbon dioxide would react with ammonia to make first, ammonium carbonate, then, given heat or time, urea. So my “unexpected discovery” was the fertilizer that would make the settlement of Mars possible. I had something that I thought would make my plot plausible.

Funnily enough, this thought took on a life of its own; the more I thought about it, the more I liked it, because it helps to explain, amongst other things, how life began. (The reduced form of nitrogen is a set of compound called nitrides. Water on nitrides, plus heat, makes ammonia, and also cyanide, which is effectively carbon nitride.) Standard theory, of course, assumes that nitrogen was always emitted as the nitrogen gas we have in our atmosphere. Of course you might think that all the scientists are right and I am wrong. Amongst others, Carl Sagan calculated that if ammonia was emitted into the atmosphere, it would be removed by sunlight in a matter of a decade or so, and he had to be right, surely? Well, no. Anyone can be wrong. (Of course you may say some, such as me, are more likely to be wrong than others!) However, in this case I maintain that Sagan was wrong because he overlooked something: ammonia dissolves in water at a very fast rate, and in water it will be protected to some extent. To justify that, we have found rocks on Earth that are 3.2 billion years old and that have samples of seawater enclosed, and these drops of seawater have very high levels of ammonia. These levels are sufficiently high that about 10% of Earth’s nitrogen must have been dissolved in the sea as ammonia at the time, and that is after the Earth had been around for about 500 million years after the water flowed on Mars.

If anyone is interested in why I think this occurred, Red Gold has an appendix where my first explanation is given in simple language. For those who want something a bit more detailed, together with a review of several hundred scientific papers, you could try my ebook, Planetary Formation and Biogenesis.