Ross 128b a Habitable Planet?

Recently the news has been full of excitement that there may be a habitable planet around the red dwarf Ross 128. What we know about the star is that it has a mass of about 0.168 that of the sun, it has a surface temperature of about 3200 degrees K, it is about 9.4 billion years old (about twice as old as the sun) and consequently it is very short of heavy elements, because there had not been enough supernovae that long ago. The planet is about 1.38 the mass of Earth, and it is about 0.05 times as far from its star as Earth is. It also orbits its star every 9.9 days, so Christmas and birthdays would be a continual problem. Because it is so close to the star it gets almost 40% more irradiation than Earth does, so it is classified as being in the inner part of the so-called habitable zone. However, the “light” is mainly at the red end of the spectrum, and in the infrared. Even more bizarrely, in May this year the radio telescope at Arecibo appeared to pick up a radio signal from the star. Aliens? Er, not so fast. Everybody now seems to believe that the signal came from a geostationary satellite. Apparently here is yet another source of electromagnetic pollution. So could it have life?

The first question is, what sort of a planet is it? A lot of commentators have said that since it is about the size of Earth it will be a rocky planet. I don’t think so. In my ebook “Planetary Formation and Biogenesis” I argued that the composition of a planet depends on the temperature at which the object formed, because various things only stick together in a narrow temperature range, but there are many such zones, each giving planets of different composition. I gave a formula that very roughly argues at what distance from the star a given type of body starts forming, and if that is applied here, the planet would be a Saturn core. However, the formula was very approximate and made a number of assumptions, such as the gas all started at a uniform low temperature, and the loss of temperature as it migrated inwards was the same for every star. That is known to be wrong, but equally, we don’t know what causes the known variations, and once the star is formed, there is no way of knowing what happened so that was something that had to be ignored. What I did was to take the average of observed temperature distributions.

Another problem was that I modelled the centre of the accretion as a point. The size of the star is probably not that important for a G type star like the sun, but it will be very important for a red dwarf where everything happens so close to it. The forming star gives off radiation well before the thermonuclear reactions start through the heat of matter falling into it, and that radiation may move the snow point out. I discounted that largely because at the key time there would be a lot of dust between the planet and the star that would screen out most of the central heat, hence any effect from the star would be small. That is more questionable for a red dwarf. On the other hand, in the recently discovered TRAPPIST system, we have an estimate of the masses of the bodies, and a measurement of their size, and they have to have either a good water/ice content or they are very porous. So the planet could be a Jupiter core.

However, I think it is most unlikely to be a rocky planet because even apart from my mechanism, the rocky planets need silicates and iron to form (and other heavier elements) and Ross 128 is a very heavy metal deficient star, and it formed from a small gas cloud. It is hard to see how there would be enough material to form such a large planet from rocks. However, carbon, oxygen and nitrogen are the easiest elements to form, and are by far the most common elements other than hydrogen and helium. So in my theory, the most likely nature of Ross 128b is a very much larger and warmer version of Titan. It would be a water world because the ice would have melted. However, the planet is probably tidally locked, which means one side would be a large ocean and the other an ice world. What then should happen is that the water should evaporate, form clouds, go around the other side and snow out. That should lead to the planet eventually becoming metastable, and there might be climate crises there as the planet flips around.

So, could there be life? If it were a planet with a Saturn core composition, it should have many of the necessary chemicals from which life could start, although because of the water/ice live would be limited to aquatic life. Also, because of the age of the planet, it may well have been and gone. However, leaving that aside, the question is, could life form there? There is one restriction (Ranjan, Wordsworth and Sasselov, 2017. arXiv:1705.02350v2) and that is if life requires photochemistry to get started, then the intensity of the high energy photons required to get many photochemical processes started can be two to four orders of magnitude less than what occurred on Earth. At that point, it depends on how fast everything that follows happens, and how fast the reactions that degrade them happen. The authors of that paper suggest that the UV intensity is just too low to get life started. Since we do not know exactly how life started yet, that assessment might be premature, nevertheless it is a cautionary point.


Planets for alien life (2)

My last post gave an estimate of how many stars were suitable for having planets with life, if they had rocky planets in the right place. The answer comes out very roughly as one per every five hundred cubic light years. At first sight, not very common, but galaxies are very big, and we end up with about a hundred billion in this galaxy. The next question is, are there further restrictions? Extrasolar planets are reasonably common, according to recent surveys, however most of these found are giants that are very close to the star, and totally unsuited for life. On the other hand, there is a severe bias: the two methods that have yielded the most discoveries favour the finding of large planets close to the star.

To form stars, a large volume of gas begins to collapse, and as it collapses to form a star, it also forms a spinning disk. Three stages then follow. The first stage involves gas falling into the star from an accretion disk at a rate of a major asteroid’s mass each second. The second involves a much quieter stage, where the star has essentially formed, but it still has a disk, which it is accreting at a much slower rate, about a thousandth as fast. Finally, the star has “indigestion” and in a massive burp, clears out what is left of the disk (technically called a T Tauri event). The standard theory has the planets forming in the second stage or, for rocky planets, even following the T Tauri cleanout.

There are two important issues. As the gas falls into the star, both energy and angular momentum must be conserved. The fate of energy is simple: as the gas falls inwards, it gets hotter, and it is simple gravitation that heats the star initially, until it reaches about 80 million degrees, at which point deuterium starts to fuse and this ignites stellar fusion. However, the issue with angular momentum is more difficult. This is like an ice skater – as she brings her arms closer to herself, she starts spinning faster; put out her arms and the spin slows. As the gas heads into the star, the star should spin faster. The problem is, almost all the mass of the solar system is in the star, but almost all the angular momentum is in the planets. How did this happen?

Either all the mass retained its original angular momentum or it did not. If it did, then the sun should be spinning at a ferocious rate. While it could have lost angular momentum by throwing an immense amount of gas back into space, nobody has ever seen this phenomenon. If the stellar mass did not retain its angular momentum, it had to exchange it with something else. In my opinion, what actually happened is that the forming planets took up the angular momentum from gas that then fell into the star. If that is true, every star with enough heavy elements will form planets of some description because it helps stellar accretion. If so, the number of planet-bearing stars is very close to the number of stars.

There is, however, another problem. In my theory (Planetary Formation and Biogenesis for more details) planets simply keep growing until the stage 3 disk clear-out. If they get big enough, mutual gravitational interactions disrupt their orbits and something like billiards occurs. The planets do not collide, but if they come close enough one will be thrown out of the system (astronomers have already detected planets floating around in space, unattached to any star) and the other will end up as a giant very close to the star. A considerable number of such systems have been found. This would totally disrupt Earth-like planets, so stars with planets suitable for life must have had a shorter stage 2.

How short? Stage 2 can last up to 30 million years, although that is probably an exception, while the shortest stage 2 is less than a million years. The answer is, probably no more than a million years, i.e. our planetary system was formed around a star that had a relatively short secondary accretion. The reason I say that is as follows. The rate of accretion of a gas giant should be proportional to how much gas there is around it, and for how long. The amount of gas decreases as the distance from the star increases, and if you double the distance from the star, the gas density decreases somewhere between a half and a quarter. Now the three million year old star LkCa 15 is slightly smaller than our sun but it still has a second stage gas disk. This star has a planet nearly five times as big as Jupiter about three times further away from the star. This almost certainly means that Jupiter must have stopped growing well within three million years. (As an aside, standard theory requires at least 15 million years to start a gas giant.) Fortunately, it appears that about half the stars have such a short secondary stage. If we then say that about half the stars will be in the wrong part of the galaxy, then the estimate of stars that could be suitable for life reduces to about 25 billion. If we further reduce the total by those that are simply too young, or do not have sufficient metallicity, we could reduce the total to about 10 billion. These numbers are very rough, but the message remains: there are plenty of stars suitable to sustain life-bearing planets in the galaxy. The next question is, how many stars will have rocky planets?