The Ice Giants’ Magnetism

One interesting measurement made from NASA’S sole flyby of Uranus and Neptune is that they have complicated magnetic fields, and seemingly not the simple dipolar field as found on Earth. The puzzle then is, what causes this? One possible answer is ice.

You will probably consider ice as not particularly magnetic nor particularly good at conducting electric current, and you would be right with the ice you usually see. However, there is more than one form of ice. As far back as 1912, the American physicist Percy Bridgman discovered five solid phases of water, which were obtained by applying pressure to the ice. One of the unusual properties of ice is that as you add pressure, the ice melts because the triple point (the temperature where solid, liquid and gas are in equilibrium) is at a lower temperature than the melting point of ice at room pressure (which is 0.1 MPa. A pascal is a rather small unit of pressure; the M mean million, G would mean billion). So add pressure and it melts, which is why ice skates work. Ices II, III and V need 200 to 600 MPa of pressure to form. Interestingly, as you increase the pressure, Ice III forms at about 200 Mpa, and at about -22 degrees C, but then the melting point rises with extra pressure, and at 350 MPa, it switches to Ice V, which melts at – 18 degrees C, and if the pressure is increased to 632.4 MPa, the melting point is 0.16 degrees C. At 2,100 MPa, ice VI melts at just under 82 degrees C. Skates don’t work on these higher ices. As an aside, Ice II does not exist in the presence of liquid, and I have no idea what happened to Ice IV, but my guess is it was a mistake.

As you increase the pressure on ice VI the melting point increases, and sooner or later you expect perhaps another phase, or even more. Well, there are more, so let me jump to the latest: ice XVIII. The Lawrence Livermore National Laboratory has produced this by compressing water to 100 to 400 GPa (1 to 4 million times atmospheric pressure) at temperatures of 2,000 to 3,000 degrees K (0 degrees centigrade is about 273 degrees K, and the scale is the same) to produce what they call superionic ice. What happens is the protons from the hydroxyl groups of water become free and they can diffuse through the empty sites of the oxygen lattice, with the result that the ice starts to conduct electricity almost as well as a metal, but instead of moving electrons around, as happens in metals, it is assumed that it is the protons that move.

These temperatures and pressures were reached by placing a very thin layer of water between two diamond disks, following which six very high power lasers generated a sequence of shock waves that heated and pressurised the water. They deduced what they got by firing 16 additional high powered lasers that delivered 8 kJ of energy in a  one-nanosecond burst on a tiny spot on a small piece of iron foil two centimeters away from the water a few billionths of a second after the shock waves. This generated Xrays, and from the way they diffracted off the water sample they could work out what they generated. This in itself is difficult enough because they would also get a pattern from the diamond, which they would have to subtract.

The important point is that this ice conducts electricity, and is a possible source of the magnetic fields of Uranus and Neptune, which are rather odd. For Earth, Jupiter and Saturn, the magnetic poles are reasonably close to the rotational poles, and we think the magnetism arises from electrically conducting liquids rotating with the planet’s rotation. But Uranus and Neptune have quite odd magnetic fields. The field for Uranus is aligned at 60 degrees to the rotational axis, while that for Neptune is aligned at 46 degrees to the rotational axis. But even odder, the axes of the magnetic fields of each do not go through the centre of the planet, and are displaced quite significantly from it.

The structure of these planets is believed to be, from outside inwards, first an atmosphere of hydrogen and helium, then a mantle of water, ammonia and methane ices, then interior to that a core of rock. My personal view is that there will also be carbon monoxide and nitrogen ices in the mantle, at least of Neptune. The usual explanation for the magnetism has been that magnetic fields are generated by local events in the icy mantles, and you see comments that the fields may be due to high concentrations of ammonia, which readily forms charged species. Such charges would produce magnetic fields due to the rapid rotation of the planets. This new ice is an additional possibility, and it is not beyond the realms of possibility that it might contribute to the other giants.

Jupiter is found from our spectroscopic analyses to be rather deficient in oxygen, and this is explained as being due to the water condensing out as ice. The fact that these ices form at such high temperatures is a good reason to believe there may be such layers of ice. This superionic ice is stable as a solid at 3000 degrees K, and that upper figure simply represents the highest temperature the equipment could stand. (Since water reacts with carbon, I am surprised it got that high.) So if there were a layer of such ice around Jupiter’s core, it too might contribute to the magnetism. Whatever else Jupiter lacks down there, pressure is not one of them.

The Formation of the Giant Planets

Before I can discuss how we got the elements required for life delivered to Earth, it is necessary to work out how the planets formed, and why we have what we have. While the giant planets are almost certainly not going to have life, at least not as we would recognise it, they are important because what we have actually gives some important clues as to how planets form, and hence how common life will be, and why so many exoplanetary systems are so different from ours. The standard theory says a core accreted, then when it got sufficiently big, which calculations have at about 10 to 12 times the Earth mass it starts accreting gas in substantial amounts and it grows very slowly, the problem restricting growth being how it can compress its volume and get rid of the heat so generated. After a number of million years, its mass gets big enough, and it accretes everything that comes into range. Apart from the rather slow time the calculations give, that general description is almost certainly essentially correct. The reason we believe the core has to get to about 10 – 12 Earth masses before disk gases get accreted in serious amounts is because the evidence is the Neptune and Uranus have about 2 Earth masses of hydrogen and helium. So far, reasonably good. The fact that there is evidence the calculations are wrong is not damning; the fact that if the mechanism is not properly understood in close detail then the calculations will inevitably be wrong. The original calculations had these stages taking about 10 My to get to a planet the size of Jupiter. The very first calculations had it taking about a billion years to get to Neptune, but that obviously cannot be right because the disk gases had long gone before that. The real problem is how to get to the cores.

The standard theory says they started by the accretion of a distribution of planetesimals that were formed by the accretion of dust, and therefore were distributed according to the dust concentrations through the disk. There are two problems with this for me. First, we see these disks, and we see them because their dust scatters light. Some such disks are 30 My old and still dusty, so the dust itself is not rapidly accreting, altough often there are bands where there seems to be little dust. The second problem is that there is no recognized mechanism by which the dust can accrete and stick together strongly enough not to be disrupted by any other dustball that collides with it. Mathematics indicate that such dustballs, if they reach about 2 cm size, erode from gas motion relative to them.

So, how did the cores form? I think we have evidence from the fact their systems all have different compositions. The theory I outlined in my ebook Planetary Formation and Biogenesis goes like this. The dust that comes from deep space has a lot of very fluffy ice around it, and this has many pores. Within those pores, and around the ice, are the ices of other volatiles. (Such compound ices have been made in the lab, and their behaviour verified.) As the ices come in, the more volatile ones start subliming away at temperatures a little above their melting point, and hydrogen has even been maintained as an ice enclosed in water ice pores up to a little under 15 degrees K, which is well above its boiling point. So, as the ices come in and the disk gets gradually hotter, the ices selectively boil away. The relevant temperatures are: neon (~25 K); nitrogen and carbon monoxide (~65 K); argon and methane (~ 85); ammonia and methanol (~170 K); water (273 K).

What I suggest happened is the same mechanism that forms snowballs started planetary accretion. When snow is squeezed at a temperature a little below its triple point, the pressure causes localised melt fusion, and the particles stick together. In this case we have several ices entrained in the ice/dust, and I suggest the same happens for each ice. This has consequences. The temperature profile in these disks is observed to be where the temperature T is proportional to r^-0.75, r the distance from the star, with a significant variation, which is expected because the faster the gas comes in, or the warmer it was to start with, the further out a specific temperature will be found, while the denser the gas flow, the greater the temperature gradient. Now, because Jupiter is the biggest planet, and water ice is the most common single material, assume (like everyone else) that Jupiter is more or less where the water ice so fuses. If we assume the average disk temperature profile (actually r^-0.82 is better for what follows for our solar system) then the remaining giants are quite close to where they are supposed to be. So the mechanism is that ices come together, they hit, the collisional energy melts an ice in the impact zone such that they rapidly refreeze, and the particles stick together. To predict where the planets should be I put Jupiter at 5.2 A.U. as a water-ice core sets the constant of proportionality. The next ice is ammonia/methanol/water, which could melt between 164 – 195 oK, which suggests that Saturn should be between 7.8 – 9.6 A.U. Saturn has a semimajor axis of 9.5 A.U. The next ice out is methane/argon, with melting between 84 – 90 oK. The calculated position of Uranus is between 20-21.7 A.U., while the observed position is 19.2 A.U. The next ice, carbon monoxide/nitrogen melts between 63 – 68 oK, which predicts Neptune to be between 28.1 – 30.7 A.U., and Neptune has a semimajor axis of 30 A.U. Note that as they form, we excpect some movement through gravitational interactions and the effects of the gas.

This means the Jovian system is both nitrogen and carbon deficient, apart from Jupiter itself which accreted gas from the disk, and the very tenuous atmosphere of Europa is reported to actually have more sodium in it than nitrogen. Sorry, but no life under the ice at Europa because there is nothing much with which to have organic chemistry. The reason for the lack of atmosphere is the satellites have nothing in them that could form a gas at those temperatures. The major component is hydroxyl, from the photochemiclo deomposition of water, but this is extremely reactive and does not build up.

The Saturnian system has water, plus methanol and ammonia. The ammonia has been seen at Enceladus, and its decay product during UV radiation, nitrogen, is the main gas of Titan. The methane there will come from reactions of methanol and rocks. The Uranian system has methane and argon. Unfortunately the satellites are too small to have atmospheres, and Neptune’s satellites are similar, as while Triton has nitrogen volcanoes, it is probably a captured Kuiper Belt object, as it orbits Neptune the wrong way. However the atmosphere of Neptune has more nitrogen than expected from the accretion disk, whereas Uranus does not. More specific details are in the ebook, but in my opinion, the above describes reasonably well how these systems formed, and why they have the chemical composition we see. The Kuiper belt objects are the same as the core of Neptune, and are essentially a “tail” of the accretion process.

Finally, the perceptive will notice the possibility of two further zones of accretion. Further out, there will be a zone where neon trapped in ice might accrete, and even further out, because hydrogen can be trapped in ice even up to about 15 K, a hydrogen accretion zone where the liquid hydrogen dissolves neon, which then refreezes. The latter is not impossible. There are exoplanets a few hundred A.U. from the star, or, say, over ten times further than Neptune. On the other hand, there is a further mechanism that could form them, namely collapse of the disk, which presumably starts the star. So I should be able to predict where this planet 9 is? That is not so easy because the temperature of the disk follows the above relationship only approximately, and when we get down to these low temperatures, any deviation, including the initial temperature of the gas (which in the above relation is taken as zero, but it isn’t) suddenly becomes important. My published estimate for a neon-based planet is at a hundred A.U., with a possible minus 30 and a plus fifty A.U. Not exactly helpful. If I knew thie initial temperature, and the rate of heat loss from the disk by radiation at those distances I could be far more precise.