A Giant Planet Around a Dwarf Star

The news here, at least, has made much of the discovery of NGTS-1b, described as a giant planet orbiting a dwarf star. It is supposed to be the biggest planet ever found around such a small star, and it is supposed to be inexplicable how such a big planet could form. One key point that presumably everyone will agree with is, a small star forms because there is less gas and dust in the cloud that will form the star than in the cloud that forms a big star. Accordingly there is less total material to form a planet. Missing from that statement is the fact that in all systems the amount of mass in the planets is trivial compared to the mass of the star. Accordingly, there is nothing at all obscure about an unexpectedly big planet if the planet was just a bit more efficient at taking material that would otherwise go into the star.

So, a quick reality check: the star is supposed to be about 60% the size of the sun, and the planet is about 80% the mass of Jupiter, but has a somewhat larger radius. Planets up to twenty times the size of Jupiter are known around stars that are not more than about three times the size of our sun, so perhaps there is more being made of this “big planet” than is reasonable.

Now, why is it inexplicable how such a large planet could form around a small star, at least in standard theory? The mechanism of formation of planets in the standard theory is that first gas pours in, forms the star, and leaves a residual disk (the planetary accretion disk), in which gas is essentially no longer moving towards the star. That is not true; the star continues to accrete, but several orders or magnitude more slowly. The argument then is that this planetary accretion disk has to contain all the material needed to form the planets, and they have to form fast enough to get as big as they end up before the star ejects all dust and gas, which can take somewhere up to 10 million years (10 My), with a mean of about 3 My. There is some evidence that some disks last at least 30 My. Now the dust collides, sticks (although why or how is always left out in the standard theory) and forms planetesimals, which are bodies of asteroid size. These collide and form bigger bodies, and so on. This is called oligarchic growth. The problem is, as the bodies get larger, the distance between them increases and collision probability falls away, not helped by the fact that the smaller the star, the slower the orbiting bodies move, the less turbulent it will be, so the rate of collisions slows dramatically. For perspective purposes, collisions in the asteroid belt are very rare, and when they occur, they usually lead to the bodies getting smaller, not bigger. There are a modest number of such families of detritus asteroids.

The further out the lower the concentration of matter, simply because there is a lot more space. A Jupiter-sized body has to grow fast because it has to get big enough for its gravity to hold hydrogen, and then actually hold it, before the disk gases disappear. Even accreting gas is not as simple as it might sound, because as the gas falls down the planetary gravitational field, it gets hot, and that leads to some gas boiling off back to space. To get going quickly, it needs more material, and hence a Jupiter type body is argued (correctly, in my opinion) to form above the snow line of water ice. (For the purposes of discussion, I shall call material higher up the gravitational potential “above”, in which case “below” is closer to the star.) It is also held that the snow line is not particularly dependent on stellar mass, in which case various planetary systems should scale similarly. With less material around the red dwarf, and as much space to put it in, everything will go a lot slower and the gas will be eliminated before a planet is big enough to handle it. Accordingly, it seems that according to standard theory, this planet should not form, let alone be 0.036 A.U. from the star.

The distance from the star is simply explained in any theory: it started somewhere else and moved there. The temperature at that distance is about 520 degrees C, and with solar wind it would be impossible for a small core to accrete that much gas. (The planet has a density of less than 1, so like Saturn it would float if put in a big enough tub of water.) How would it move? The simplest way would be if we imagined a Jupiter and a Saturn formed close enough together, when they could play gravitational billiards, whereby one moves close to the star and the other is ejected from the system. There are other plausible ways.

That leaves the question of how the planet forms in the first place. To get so big, it has to form fast, and there is evidence to support such rapid growth. The planet LkCa 15b is around a star that is slightly smaller than the sun, it is three times further out than Jupiter, and it is five times bigger than Jupiter. I believe this makes our sun special – the accretion disk must have been ejected maybe as quickly as 1 My. Simulations indicate that oligarchic growth should not have led to any such oligarchic growth that far out. My explanation (given in my ebook “Planetary Formation and Biogenesis”) is that the growth was actually monarchic. This is a mechanism once postulated by Weidenschilling, in 2004 (Weidenschilling, S., 2004. Formation of the cores of the outer planets. Space Science Rev. 116: 53-56.) In this mechanism, provided other bodies do not grow at a sufficient rate to modify significantly the feed density, a single body will grow proportionately to its cross-sectional area by taking all dust that is in its feed zone, which is augmented by gravitation. The second key way to get a bigger planet is to have the planetary accretion disk last longer. The third is, in my theory, the initial accretion is chemical, and the Jupiter core forms like a snowball, by water ice compression fusing. Further, I argue it will start even while the star is accreting. That only occurs tolerably close to the melting point, so it is temperature dependent. The temperatures are reached very much closer to the star for a dwarf. Finally, the planet forming around a dwarf has one final growth advantage: because the star has a lower gravity, the gas will be drifting towards the star more slowly, so the growing planet, while having a less dense feed, also receives a higher fraction of the feed.

So, in my opinion, apart from the fact the planet is so lose to the star, so far there is nothing surprising about it at all, and the mechanisms for getting it close to the star are there, and there are plenty of other “star-burning” planets that have been found.

Why has the monarchic growth concept not taken hold? In my opinion, this is a question of fashion. The oligarchic growth mechanism has several advantages for the preparation of scientific papers. You can postulate all sorts of initial conditions and run computer simulations, then report those that make any sense as well as those that don’t (so others don’t waste time.) Monarchic growth leaves no real room for scientific papers.