Plastics and Rubbish

In the current “atmosphere” of climate change, politicians are taking more notice of the environment, to which as a sceptic I notice they are not prepared to do a lot about it. Part of the problem is following the “swing to the right” in the 1980s, politicians have taken notice of Reagan’s assertion that the government is the problem, so they have all settled down to not doing very much, and they have shown some skill at doing very little. “Leave it to the market” has a complication: the market is there to facilitate trade in which all the participants wish to offer something that customers want and they make a profit while doing it. The environment is not a customer in the usual sense and it does not pay, so “the market” has no direct interest in it.

There is no one answer to any of these problems. There is no silver bullet. What we have to do is chip away at these problems, and one that indicates the nature of the problem is plastics. In New Zealand the government has decided that plastic bags are bad for the environment, so the single use bags are no longer used in supermarkets. One can argue whether that is good for the environment, but it is clear that the wilful throwing away of plastics and their subsequent degradation is bad for it. And while the disposable bag has been banned here, rubbish still has a lot of plastics in it, and that will continue to degrade. If it were buried deep in some mine it probably would not matter, but it is not. So why don’t we recycle them?

Then first reason is there are so many variations of them and they do not dissolve in each other. You can emulsify a mix, but the material has poor strength because there is very little binding at the interface of the tiny droplets. That is because they have smooth surfaces, like the interface between oil and water. If the object is big enough this does not matter so much, thus you can make reasonable fence posts out of recycled plastics, but there really is a limit to the market for fence posts.

The reason they do not dissolve in each other comes from thermodynamics. For something to happen, such as polymer A dissolving in polymer B, the change (indicated by the symbol Δ) in what is called the free energy ΔG has to be negative. (The reason it is negative is convention; the reason it is called “free” has nothing to do with price – it is not free in that sense.) To account for the process, we use an equation

            ΔG = ΔH -T ΔS

ΔH reflects the change of energy between each molecule in its own material and in solution of the other material. As a general rule, molecules favour having their own kind nearby, especially if they are longer because the longer they are the interactions per atom are constant for other molecules of the same material, but other molecules do not pack as well. Thinking of oil and water, the big problem for solution is that water, the solvent, has hydrogen bonds that make water molecules stick together. The longer the polymer, per molecule that enhances the effect. Think of one polymer molecule has to dislodge a very large number of solvent molecules. ΔS is the entropy and it increases as the degree of randomness increases. Solution is more random per molecule, so whether something dissolves is a battle between whether the randomness per molecule can overcome the attractions between the same kind. The longer the polymer, the less randomness is introduced and the greater any difference in energy between same and dissolved. So the longer the polymers, the less likely they are to dissolve in each other which, as an aside, is why you get so much variety in minerals. Long chain silicates that can alter their associate ions like to phase separate.

So we cannot recycle, and they are useless? Well, no. At the very least we can use them for energy. My preference is to turn them, and all the organic material in municipal refuse, into hydrocarbons. During the 1970s oil crises the engineering was completed to build a demonstration plant for the city of Worcester in Massachusetts. It never went ahead because as the cartel broke ranks and oil prices dropped, converting wastes to hydrocarbon fuels made no economic sense. However, if we want to reduce the use of fossil fuels, it makes a lot of sense to the environment, IF we are prepared to pay the extra price. Every litre of fuel from waste we make is a litre of refined crude we do not have to use, and we will have to keep our vehicle fleet going for quite some time. The basic problem is we have to develop the technology because the engineering data for that previous attempt is presumably lost, and in any case, that was for a demonstration plant, which is always built on the basis that more engineering questions remain. As an aside, water at about 360 degrees Centigrade has lost its hydrogen bonding preference and the temperature increase means oil dissolves in water.

The alternative is to burn it and make electricity. I am less keen on this, even though we can purchase plants to do that right now. The reason is simple. The combustion will release more gases into the atmosphere. The CO2 is irrelevant as both do that, but the liquefaction approach sends nitrogen containing material out as water soluble material which could, if the liquids were treated appropriately, be used as a fertilizer, whereas in combustion they go out the chimney as nitric oxide or even worse, as cyanides. But it is still better to do something with it than simply fill up local valleys.

One final point. I saw an item where some environmentalist was condemning a UK thermal plant that used biomass arguing it put out MORE CO2 per MW of power than coal. That may be the case because you can make coal burn hotter and the second law of thermodynamics means you can extract more energy in the form of work. (Mind you, I have my doubts since the electricity is generated from steam.) However, the criticism shows the inability to understand calculus. What is important is not the emissions right now, but those integrated over time. The biomass got its carbon from the atmosphere say forty years ago, and if you wish to sustain this exercise you plant trees that recover that CO2 over the next forty years. Burn coal and you are burning carbon that has been locked away from the last few million years.

The Need for, and the Problems of, Recycling

The modern economies rely on the supply of raw materials, and of these, elements are the most critical because there are no alternatives to them. Businesses will collapse if certain elements became unavailable, and the British Geological Society puts out a “risk list” of elements that have a risk of supply disruption. The list is debatable, because it includes political risk, thus the most risky from their perspective are the rare earth elements, the problem here being that China is essentially the main producer and reserve holder. These elements’ risk factors also depend on their demand, thus if there is no known use for something, it has zero risk because even if there is none of it, who cares? However, the overall conclusion is, we could have a problem. As in many such issues, not everyone agrees. Staff at the University of Geneva have published a report arguing that there is no shortage, at least for the foreseeable future. They argue you can mine over three kilometers below the Earth’s surface, or in the oceans. Whether you want to do this, or can even find the deposits, is less clear.

There is no shortage of elements but the bulk of them are distributed in very low concentrations in rock, or seawater. It may surprise some to know that there is plenty of gold in seawater. The problem is, it is rather dilute, and of course there are massive amounts of other materials. Thus there is about eleven tonnes of gold in a trillion tonnes of seawater. Good luck trying to get it out. Same with the rare earth elements. They are not especially rare; however they are particularly rare in workable deposits. Part of the problem is their chemistry has a certain similarity to aluminium, and as a result, they tend to be spread out amongst feldsic/granitic material and as microscopic inclusions (mixed with a lot of other stuff) in basalt. Rather interestingly, there are massive deposits on the Moon, where, as the Moon cooled down, the various rocks crystallised into solids, and one of the last of the liquids to solidify was KREEP, a mix of potassium (K), rare earth elements, and phosphate (P). This also indicates the reason why we have ore deposits on Earth: geological processing. Taking gold as an example, it, and silica dissolve in supercritical water, and as the water comes to the surface and cools down, the gold and the silica come out of solution, which is why you find gold in quartz veins. There are, of course, a variety of geological routes to make ores, but geology is a slow process, so once we run out of easy to find deposits, we have a deep problem. And on a planet such as Mars, there has not been so much geological processing, and no plate tectonics.

One way out of this is recycling, if you can work out how to do it and make a dollar. One big user of rare elements is mobile phones. Thus the “swipe-screen” uses indium/tin oxide, the electronics use copper, silver and gold for carrying current, tantalum for microcapacitors, and neodymium in the magnets. These are the critical elements, and in general there are no substitutes for their specific uses. However, the total number of elements used can be up to sixty. The problem for recycling is first, to get hold of the old ones, as opposed to have them lying about or thrown in the trash, and then to separate out what you want. If you simply melt them, you get a horrible mix. The process could be simplified if the phones could be split into parts, thus only the screens contain indium, but how do you do that?

Early on in my scientific career, I was asked by a company to devise a means of recycling coloured plastics. I did this, a pilot plant was built, a few bugs were ironed out and we could recycle coloured polyethylene to get a very light beige product that could be made into new coloured products by the addition of pigments, and the casual user would not know the difference between that and new plastics for most uses. So this should have been a success? Well, no. There were two problems. This was during the oil crisis of the seventies, and what had happened was that there was an oversupply of new polyethylene in the world. Such surplus was dumped on the New Zealand market, where “it would not do any harm”. That dumping made the venture economically unsustainable. Some time later, the dumping stopped, but by this time the original company had lost interest. Also, the manufacturers introduced more cross-linking, and in a quick demonstration, the process did not work without altering the conditions beyond what had been assumed. There were ways around that, but the warning was clear: the manufacturers were not being friendly to recycling as they kept their information close to their chests. Such changes really hinder recycling. However, that was not the worst: new laminates started appearing, and these were a horror for recycling because the two or more different plastics put together as layers do not separate easily, and any product made from a resultant mix will be of very low quality.

So, we can either have a problem with elements, or we can recycle. Recyclers tend not to have the high technology of the multinational corporations, so my recommendation is, manufacturers should be made to design their goods in a way that aids recycling. For example, a laptop or a mobile phone has lithium ion batteries. It is also essentially impossible to get the battery out when it dies and leave the item in a workable condition. It might suit the manufacturer to force the consumer to buy another laptop as opposed to a new battery, but as the technology matures, is that good enough? Similarly, if the motherboards could be removed/replaced, that would aid recycling and also reduce demand for new gadgets. When I was young, people fixed things. I think it is time to return to those times, and also make objects as recyclable as possible. The problem then is, how do you manage that in a market where competition rules, and the consumer does not think about recycling when he or she buys a new product?