Betelgeuse Dimmed

First, I apologize for the initial bizarre appearance of my last post. For some reason, some computer decided to slice and dice. I have no idea why, or for that matter, how. Hopefully, this post will have better luck.

Some will recall that around October 2019 the red supergiant Betelgeuse dimmed, specifically from magnitude +0.5 down to +1.64. As a variable star, its brightness oscillates, but it had never dimmed like this before, at least within our records. This generated a certain degree of nervousness or excitement because a significant dimming is probably what happens initially before a supernova. There has been no nearby supernova since that of the crab nebula in 1054 AD.

To put a cool spot into perspective, if Betelgeuse replaced the sun, its size is such it would swallow Mars, and its photosphere might almost reach Saturn. Its mass is estimated at least ten times, or possibly up to twenty times, the mass of the sun. Such a variation sparks my interest because when I pointed out that my proposed dependence of characteristic planetary orbital semimajor axes on the cube of the mass of the star ran into trouble because the stellar masses were not known that well I got criticised by an astronomer: they knew the masses to within a few percent. The difference between ten times the sun’s mass and twenty times is more than a few percent. This is a characteristic of science. They can measure stellar masses fairly accurately in double star systems, then they “carry over” the results,

But back to Betelgeuse. Our best guess as to distance is between 500 – 600 light years. Interestingly, we have observed its photosphere, the outer “shell” of the star that is transparent to photons, at least to a degree, and this is non-spherical, presumably due to stellar pulsations that send matter out from the star. The star may seem “stable” but actually its surface (whatever that means) is extremely turbulent. It is also surrounded by something we could call an atmosphere, an envelope of matter about 250 times the size of the star. We don’t really know its size because these asymmetric pulsations can add several astronomical units (the Earth-sun distance) in selected directions.

Anyway, back to the dimming. Two rival theories were produced: one involved the development of a large cooler cell that came to the surface and was dimmer than the rest of Betelgeuse’s surface. The other was the partial obscuring of the star by a dust cloud. Neither proposition really explained the dimming, nor did they explain why Betelgeuse was back to normal by the end of February, 2020. Rather unsurprisingly, the next proposition was that the dimming was caused by both of those effects.

Perhaps the biggest problem because telescopes could only look at the star sone of them however a Japanese weather satellite ended up providing just the data they needed. This was somewhat inadvertent. The weather satellite was in geostationary orbit 35,786 km above the Western Pacific. It was always looking at half of Earth, and always the same half, but the background was also always constant, and in the background was Betelgeuse. The satellite revealed that the star overall cooled by 140 degrees C. This was sufficient to reduce the heating of a nearby gas cloud, and when it cooled, dust condensed and formed obscuring dust. So both theories were right, and even more strangely, both contributed roughly equally to what was called “the Great Dimming”.

It also suggested more was happening to the atmospheric structure of the star before this happened. By looking at the infrared lines, it became apparent that water molecules in the upper atmosphere that would normally create absorption lines in the star’s spectrum suddenly changed to form emission lines. Something had made them become unexpectedly hotter. The current thinking is that a shock-wave from the interior propelled a lot of gas outwards from the star, leading to a cooler surface, while heating the outer atmosphere. That is regarded as the best current explanation. It is possible that there was a similar dimming event in the 1940s, but otherwise we have not noticed much, but possibly it could have occurred but our detection methods may not have been accurate enough. People may not want to get carried away with, “I think it might be dimmer.” Anyway, for the present, no supernova. But one will occur, probably within the next 100,000 years. Keep looking upwards!

Advertisement

An Example of How Science Works: Where Does Gold Come From?

Most people seem to think that science marches on inexorably, gradually uncovering more and more knowledge, going in a straight line towards “the final truth”. Actually, it is far from that, and it is really a lurch from one point to another. It is true science continues to make a lot of measurements, and these fill our banks of data. Thus in organic chemistry, over the odd century or so we have collected an enormous number of melting points. These were obtained so someone else could check whether something else he had could be the same material, so it was not pointless. However, our attempts to understand what is going on have been littered with arguments, false leads, wrong turns, debates, etc. Up until the mid twentieth century, such debates were common, but now much less so. The system has coalesced in acceptance of the major paradigms, until awkward information comes to light that is sufficiently important that it cannot be ignored.

As an example, currently, there is a debate going on relating to how elements like gold were formed. All elements heavier than helium, apart from traces of lithium, were formed in stars. The standard theory says we start with hydrogen, and in the centre of a star, where the temperatures and pressures are sufficient two hydrogen atoms combine to form, for a very brief instant, helium 2 (two protons). An electron is absorbed, and we get deuterium, which is a proton and a neutron combined. The formation of a neutron from a proton and an electron is difficult because it needs about 1.3 MeV of energy to force it in, which is about a third of a million times bigger than the energy of any chemical bond. The diproton is a bit easier because the doubling of the positive field provides some supplementary energy. Once we get deuterium, we can do more and eventually get to helium 4 (two protons, two neutrons) and then it stops because the energy produced prevents the pressure from rising. The inside of the sun is an equilibrium, and in any given volume, a surprisingly few fusion reactions take place. The huge amount of energy is simply because of size. However, when the centre starts to run out of hydrogen, the star collapses further, and if it is big enough, it can start burning helium to make carbon and oxygen. Once the supply of helium becomes insufficient, if the star is large enough, a greater collapse happens, but this refuses to form an equilibrium. Atoms fuse at a great rate and produce the enormous amount of energy in a supernova.

What has happened in the scientific community is that once the initial theory was made, it was noticed that iron is at an energy minimum, and making elements heavier than iron absorb energy, nevertheless we know there are elements like uranium, gold, etc, because we use them. So how did they form? The real short answer is, we don’t know, but scientists with computers like to form models and publish lots of papers. The obvious way was that in stars, we could add a sequence of helium nuclei, or protons, or even, maybe, neutrons, but these would be rare events. However, in the aftermath of a supernova, huge amounts of energy are released, and, it is calculated, a huge flux of neutrons. That 1.3 MeV is a bit of a squib to what is available in a supernova, and so the flux of neutrons could gradually add to nuclei, and when it contained too many neutrons it would decay by turning a neutron into a proton, and the next element up, and hence this would be available form further neutrons. The problem though, is there are only so many steps that can be carried out before the rapidly expanding neutron flux itself decays. At first sight, this does not produce enough elements like gold or uranium, but since we see them, it must have.

Or must it? In 2017, we detected gravitational wave from an event that we could observe and had to be attributed to the collision of two neutron stars. The problem for heavy elements from supernovae is, how do you get enough time to add all the protons and neutrons, more or less one at a time. That problem does not arise for a neutron star. Once it starts ejecting stuff into space, there is no shortage of neutrons, and these are in huge assemblies that simply decay and explode into fragments, which could be a shower of heavy elements. While fusion reactions favour forming lighter elements, this source will favour heavier ones. According to the scientific community, problem solved.

There is a problem: where did all the neutron stars come from? If the elements come from supernovae, all we need is big enough stars. However, neutron stars are a slightly different matter because to get the elements, the stars have to collide. Space is a rather big place. Let over all time the space density of supernovae be x, the density of neutron stars y, and the density of stars as z. All these are very small, but z is very much bigger than x and x is almost certainly bigger than y. The probability of two neutron stars colliding is proportional to y squared, while the probability of a collision of a neutron stars another star would be correspondingly proportional to yz. Given that y is extremely small, and z much bigger, but still small, most neutron stars will not collide with anything in a billion years, some will collide with a different star, while very few will collide with another neutron star. There have been not enough neutron stars to make our gold, or so the claims go.So what is it? I don’t know, but my feeling is that the most likely outcome is that both mechanisms will have occurred, together with possible mechanisms we have yet to consider. In this last respect, we have made elements by smashing nuclei together. These take a lot of energy and momentum, but anything we can make on Earth is fairly trivial compared with the heart of a supernova. Some supernovae are calculated to produce enormous pressure waves, and these could fuse any nuclei together, to subsequently decay, because the heavy ones would be too proton rich.  This is a story that is unfolding. In twenty years, it may be quite different again.