The Face of Mars


In 1976, the Viking 1 mission began taking photographs of the surface of Mars, in part to find landing sites for future missions, and also to get a better idea of what Mars was like, to determine the ages of various parts of Mars (done by counting craters, which assumes that once the great bombardment was over, the impacts were more or less regular over time if we think in terms of geological timing.) On the Cydonia Mensae, an image came back that, when refined, looks surprisingly like a face carved into a large rock. Two points are worth mentioning. The first is, if it were such a head, the angle of the light only allows you to see the right side of the head; the rest is in deep shadow. The second is all we received of this object was 64 pixels. The “face” is clearly a butte standing up from the surface (and there are lot of these in the region) and it is about 2.5 km long, about 1.5 km wide, and something like up to 800 m above the average flat ground at its highest point. As you might imagine, with only 64 pixels, the detail is not great, but there is a crater where the right eye should be, a rise that makes the nose, and some sort of “crack” or depression that hints at a mouth, but most of the “mouth” would be in the shade, and hence would be invisible. The image was also liberally splattered with black spots; these were “failed pixels” i.e. a transmission problem. What you see below is that primary image.

640x472 pixels-FC

So, what was it? The most obvious answer was a rock that accidentally looked like a face. To the objection, what is the probability that you could end up with that, the answer is, not as bad as you might think. There are a lot of mesas and rock formations on Mars, so sooner or later one of them might look like something else. There are a number of hills etc on Earth where you can see a head, or a frog, or something if you want to. If you think about it, an oval mesa is not that improbable, and there are a lot of them. There are a very large number of impact craters on Mars, so the chances of one being roughly where an eye would be is quite high (because there is quite a bit of flexibility here) and there are really only two features – the eye and the “mouth”. The rise for the nose only requires the centre to be the highest part, and that is not improbable. As it happens, when you see the whole thing, the left side of the head has sort of collapsed, and it is a fracture offshoot from that collapse that gives the mouth.

However, the image caught the imagination of many, and some got a little carried away. Richard Hoagland wrote a book The Monuments of Mars: A City on the Edge of Forever. If nothing else, this was a really good selling book, at one stage apparently selling up ot 2000 copies a month. Yep, the likes of me are at least envious of the sales. So, what did this say? Basically, Hoagland saw several “pyramids” near the Face, and a jumble of rocks that he interpreted as a walled city. Mars had an ancient civilisation! Left unsaid was why, if there were such “Martians” did they waste effort building pyramids and carving this Face while their planet was dying? For me, another question is why does something this fanciful become a best seller, while the truth languishes?

So what caused this? I don’t know, and neither does anyone else. It is reasonably obviously caused by erosion, but what the eroding agent was remains unknown. If you believe Mars once had an ocean, the Cydonian region is roughly where one of the proposed shorelines was. It could also be caused by glaciation, or even wind erosion, aided by moisture in the rock. The freezing/thawing of water generates very powerful forces. What we need is a geologist to visit the site to answer the question, although there would be far more important things to do on Mars than worry about that rock.

Suppose it was carved by a civilization? I included that possiblity in my novel Red Gold. In this, one character tried pulling the leg of another by announcing that it was “obviously carved” by aliens with the purpose of encouraging humans to go into space. “It is worth it,” the aliens would be saying. So why is it so rough? Because the aliens were plagued by accountants, who decided that the effort to do it properly was not worth the benefit; if humans cannot take the hint from the roughly hewn rock, so be it.

It also figures in another of my novels: A Face on Cydonia. Again, it is intended as a joke in the book, but on whom? Why did I do that? Well, I started writing when I heard that Global Surveyor was going to settle this issue, so I thought I should try to have something ready for an agent. However, Global Surveyor, which took very narrow strip images, and could have taken two years to cover this area, took only a few weeks. Out of luck again! Fortunately, the story was never really about the rock, but rather the effect it had on people.

A quick commercial: if anyone is interested, the ebook is at 99 cents on Amazon (or 99p) for the first week of September. The book is the first of a trilogy, but more about people being taken to levels higher than their abilities, and also about what causes some to descend to evil. It also has just a toiuch of science; while you can ignore this and just consider it a powerful explosive, it has the first mention of a chemical tetranitrotetrahedrane. That would be a really powerful explosive, if it could be made, but the more interesting point is why is that there?


Martian Fluvial Flows, Placid and Catastrophic


Despite the fact that, apart localized dust surfaces in summer, the surface of Mars has had average temperatures that never exceeded about minus 50 degrees C over its lifetime, it also has had some quite unexpected fluid systems. One of the longest river systems starts in several places at approximately 60 degrees south in the highlands, nominally one of the coldest spots on Mars, and drains into Argyre, thence to the Holden and Ladon Valles, then stops and apparently dropped massive amounts of ice in the Margaritifer Valles, which are at considerably lower altitude and just north of the equator. Why does a river start at one of the coldest places on Mars, and freeze out at one of the warmest? There is evidence of ice having been in the fluid, which means the fluid must have been water. (Water is extremely unusual in that the solid, ice, floats in the liquid.) These fluid systems flowed, although not necessarily continuously, for a period of about 300 million years, then stopped entirely, although there are other regions where fluid flows probably occurred later. To the northeast of Hellas (the deepest impact crater on Mars) the Dao and Harmakhis Valles change from prominent and sharp channels to diminished and muted flows at –5.8 k altitude that resemble terrestrial marine channels beyond river mouths.

So, how did the water melt? For the Dao and Harmakhis, the Hadriaca Patera (volcano) was active at the time, so some volcanic heat was probably available, but that would not apply to the systems starting in the southern highlands.

After a prolonged period in which nothing much happened, there were catastrophic flows that continued for up to 2000 km forming channels up to 200 km wide, which would require flows of approximately 100,000,000 cubic meters/sec. For most of those flows, there is no obvious source of heat. Only ice could provide the volume, but how could so much ice melt with no significant heat source, be held without re-freezing, then be released suddenly and explosively? There is no sign of significant volcanic activity, although minor activity would not be seen. Where would the water come from? Many of the catastrophic flows start from the Margaritifer Chaos, so the source of the water could reasonably be the earlier river flows.

There was plenty of volcanic activity about four billion years ago. Water and gases would be thrown into the atmosphere, and the water would ice/snow out predominantly in the coldest regions. That gets water to the southern highlands, and to the highlands east of Hellas. There may also be geologic deposits of water. The key now is the atmosphere. What was it? Most people say it was carbon dioxide and water, because that is what modern volcanoes on Earth give off, but the mechanism I suggested in my “Planetary Formation and Biogenesis” was the gases originally would be reduced, that is mainly methane and ammonia. The methane would provide some sort of greenhouse effect, but ammonia on contact with ice at minus 80 degrees C or above, dissolves in the ice and makes an ammonia/water solution. This, I propose, was the fluid. As the fluid goes north, winds and warmer temperatures would drive off some of the ammonia so oddly enough, as the fluid gets warmer, ice starts to freeze. Ammonia in the air will go and melt more snow. (This is not all that happens, but it should happen.)  Eventually, the ammonia has gone, and the water sinks into the ground where it freezes out into a massive buried ice sheet.

If so, we can now see where the catastrophic flows come from. We have the ice deposits where required. We now require at least fumaroles to be generated underneath the ice. The Margaritifer Chaos is within plausible distance of major volcanism, and of tectonic activity (near the mouth of the Valles Marineris system). Now, let us suppose the gases emerge. Methane immediately forms clathrates with the ice (enters the ice structure and sits there), because of the pressure. The ammonia dissolves ice and forms a small puddle below. This keeps going over time, but as it does, the amount of water increases and the amount of ice decreases. Eventually, there comes a point where there is insufficient ice to hold the methane, and pressure builds up until the whole system ruptures and the mass of fluid pours out. With the pressure gone, the remaining ice clathrates start breaking up explosively. Erosion is caused not only by the fluid, but by exploding ice.

The point then is, is there any evidence for this? The answer is, so far, no. However, if this mechanism is correct, there is more to the story. The methane will be oxidised in the atmosphere to carbon dioxide by solar radiation and water. Ammonia and carbon dioxide will combine and form ammonium carbonate, then urea. So if this is true, we expect to find buried where there had been water, deposits of urea, or whatever it converted to over three billion years. (Very slow chemical reactions are essentially unknown – chemists do not have the patience to do experiments over millions of years, let alone billions!) There is one further possibility. Certain metal ions complex with ammonia to form ammines, which dissolve in water or ammonia fluid. These would sink underground, and if the metal ions were there, so might be the remains of the ammines now. So we have to go to Mars and dig.