Banana-skin Science

Every now and again we find something that looks weird, but just maybe there is something in it. And while reading it, one wonders, how on Earth did they come up with this? The paper in question was Silva et. al. 2022. Chemical Science 13: 1774. What they did was to take dried biomass powder and exposed it to a flash of 14.5 ms duration from a high-power xenon flash lamp. That type of chemistry was first developed to study the very short-lived intermediates generated in photochemistry, when light excites the molecule to a high energy state, where it can decay through unusual rearrangements. This type of study has been going on since the 1960s and equipment has steadily been improving and being made more powerful. However, it is most unusual to find it used for something that ordinary heat would do far more cheaply. Anyway, 1 kg of such dried powder generated about 100 litres of hydrogen and 330 g of biochar. So, what else was weird? The biomass was dried banana skin! Ecuador, sit up and take notice. But before you do, note that flash xenon lamps are not going to be an exceptionally economical way of providing heat. That is the point; this very expensive source of light was actually merely providing heat.

There are three ways of doing pyrolysis. In the previous post I pointed out that if you took cellulose and eliminated all the oxygen in the form of water, you were left with carbon. If you eliminate the oxygen as carbon monoxide you are left with hydrogen. If you eliminate it as carbon dioxide you get hydrogen and hydrocarbon. In practice what you get depends on how you do it. Slow pyrolysis at moderate heat mainly makes charcoal and water, with some gas. It may come as a surprise to some but ordinary charcoal is not carbon; it is about 1/3 oxygen, some minor bits and pieces such as nitrogen, phosphorus, potassium, and sulphur, and the rest carbon.

If you do very fast pyrolysis, called ablative pyrolysis, you can get almost all liquids and gas. I once saw this done in a lab in Colorado where a tautly held (like a hacksaw blade) electrically heated hot wire cut through wood like butter, the wire continually moving so the uncondensed liquids (which most would call smoke) and gas were swept out. There was essentially no sign of “burnt wood”, and no black. The basic idea of ablative pyrolysis is you fire wood dust or small chips at a plate at an appropriate angle to the path so the wood sweeps across it and the gas is swept away by the gas stream (which can be recycled gas) propelling the wood. Now the paper I referenced above claimed much faster pyrolysis, but got much more charcoal. The question is, why? The simple answer, in my opinion, is nothing was sweeping the product away so it hung around and got charred.

The products varied depending on the power from the lamp, which depended on the applied voltage. At what I assume was maximum voltage the major products were (apart from carbon) hydrogen and carbon monoxide. 100 litres of hydrogen, and a bit more carbon monoxide were formed, which is a good synthesis gas mix. There were also 10 litres of methane, and about 40 litres of carbon dioxide that would have to be scrubbed out. The biomass had to be reduced to 20 μm size and placed on a surface as a layer 50 μm thick. My personal view is that is near impossible to scale this up to useful sizes. It uses light as an energy source, which is difficult to generate so almost certainly the process is a net energy consumer. In short, this so-called “breakthrough” could have been carried out to give better yields of whatever was required far more cheaply by people a hundred years ago.

Perhaps the idea of using light, however, is not so retrograde. The trick would be to devise apparatus that with pyrolyse wood ablatively (or not if you want charcoal) using light focused by large mirrors. The source, the sun, is free until it hits the mirrors. Most of us will have ignited paper with a magnifying glass. Keep the oxygen out and just maybe you have something that will make chemical intermediates that you can call “green”.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s