Problems of Sustaining Settlements on Mars: Somewhere to Live.

People who write science fiction find colonizing Mars to be a fruitful source of plot material. Kim Stanley Robinson wrote three books on the topic, ending up by terraforming Mars. I have also written one (“Red Gold”) that included some of the problems. We even have one scheme currently being touted in which people are signing up for non-return trips. So, what are the problems? If we think about settlers making a one-way trip to New Zealand, as my ancestors did, they would find a rough start to life because much of the land was covered in forest, although there were plains. But forests meant timber for houses, some fuel, and even for sale. Leaving aside the stumps, the soil was ripe for planting crops, and you could run sheep or cows. It would have been a hard life, but there would be no reasons to fear instant death.

Mars is different. It has its resources, but they are in an inconvenient form. Take air. Mars has an atmosphere, but not a very dense one. The air pressure is about two orders of magnitude less that on Earth. That means you will have to live in some sort of dome or cave, and pump up the atmosphere to get adequate pressure, which requires you to build something that is airtight. The atmosphere is also full of carbon dioxide, and has essentially no oxygen. The answer to that is simple: build giant glass houses, pump up the atmosphere, and grow plants. That gives you food and oxygen, although you will need some fairly massive glass houses to get enough oxygen. So, how do you go about that? You will need pumps to pump up the air pressure, some form of filters to get the dust out of the inputs, and equipment to erect and seal the glass houses. That will need equipment brought from Earth. Fortunately you can make a lot of glass houses with one set of equipment. However, there are three more things required: glass, metal framing, and some form of footer, to seal in the pressure and stop it leaking back out. Initially that too will have to come from Earth, but sooner or later you have to start making this sort of thing on Mars, as otherwise the expense will be horrendous.

Glass is made by fusing pure silica with sodium carbonate and calcium oxide, and often other materials are added, such as alumina, magnesium oxide, and or borate. It is important to have some additives because it is necessary to filter out the UV radiation from the sun, so silica itself would not suffice. It is also necessary to find a glass that operates best at the lower temperatures, and that can be done, but how do you get the pure ingredients? Most of these elements are common on Mars, but locked up in basaltic rock or dust. The problem here is, Mars has had very little geochemical processing. On Earth, over the first billion years of ocean, a lot of basalt got weathered by the carbonic acid so a lot of magnesium ended up in the sea, and a lot of iron formed ferrous ions in aqueous dispersion. The earliest seas would have been green. Once life learned how to make oxygen, that oxidized the ferrous to ferric, and as ferric hydroxide is very insoluble, masses of iron precipitated out, eventually to dehydrate and make the haematite deposits that supply our steel industry. Life also started using the calcium, and when the life died and sunk to the bottom, deposits of limestone formed. As far as we know, that sort of thing did not happen on Mars. So, while sand is common on Mars, it is contaminated with iron. Would that make a suitable glass? Lava from volcanoes is not usually considered to be prime material for making glass.

So, how do you process the Martian rock? If you are going to try acid leaching, where do you get the acid, and what do you do with the residual solution? And where do you do all this?

While worrying about that, there is the question of the footer. How do you make that? In my novel Red Gold I assumed that they had developed a cement from Martian sources. That is, in my opinion, plausible. It may not be quite like our cement, which is made from limestone and clays heated to about 1700 degrees C. However, some volcanic eruptions produce material which, when heated and mixed with burnt lime make excellent cements. The main Roman cement was essentially burnt lime mixed with some heat-treated output of Vesuvius. Note once again we need lime. This, in turn, could be a problem.

My solution in Red Gold to the elements problem was simply to smash sand into its atoms and separate the elements by electromagnetism, similar to how a mass spectrometer works. The energy input for such a scheme would be very high, but the argument there was they had developed nuclear fusion, so energy was not a problem, nor for that matter, was temperature. No molecules can survive much more than about ten thousand degrees C, and nuclear fusion has a minimum temperature of about eighty million degrees C. Fine, in a novel. Doing that in practice might be a bit more difficult. However, if you don’t do something like that, how do you get the calcium oxide to make your cement, or your glass? And without a glass house, how can you eat and breathe? Put you off going to Mars? If it hasn’t, I assure you once you have your dome your problems are only beginning. More posts on this some time later.

Martian Fluvial Flows, Placid and Catastrophic

Image

Despite the fact that, apart localized dust surfaces in summer, the surface of Mars has had average temperatures that never exceeded about minus 50 degrees C over its lifetime, it also has had some quite unexpected fluid systems. One of the longest river systems starts in several places at approximately 60 degrees south in the highlands, nominally one of the coldest spots on Mars, and drains into Argyre, thence to the Holden and Ladon Valles, then stops and apparently dropped massive amounts of ice in the Margaritifer Valles, which are at considerably lower altitude and just north of the equator. Why does a river start at one of the coldest places on Mars, and freeze out at one of the warmest? There is evidence of ice having been in the fluid, which means the fluid must have been water. (Water is extremely unusual in that the solid, ice, floats in the liquid.) These fluid systems flowed, although not necessarily continuously, for a period of about 300 million years, then stopped entirely, although there are other regions where fluid flows probably occurred later. To the northeast of Hellas (the deepest impact crater on Mars) the Dao and Harmakhis Valles change from prominent and sharp channels to diminished and muted flows at –5.8 k altitude that resemble terrestrial marine channels beyond river mouths.

So, how did the water melt? For the Dao and Harmakhis, the Hadriaca Patera (volcano) was active at the time, so some volcanic heat was probably available, but that would not apply to the systems starting in the southern highlands.

After a prolonged period in which nothing much happened, there were catastrophic flows that continued for up to 2000 km forming channels up to 200 km wide, which would require flows of approximately 100,000,000 cubic meters/sec. For most of those flows, there is no obvious source of heat. Only ice could provide the volume, but how could so much ice melt with no significant heat source, be held without re-freezing, then be released suddenly and explosively? There is no sign of significant volcanic activity, although minor activity would not be seen. Where would the water come from? Many of the catastrophic flows start from the Margaritifer Chaos, so the source of the water could reasonably be the earlier river flows.

There was plenty of volcanic activity about four billion years ago. Water and gases would be thrown into the atmosphere, and the water would ice/snow out predominantly in the coldest regions. That gets water to the southern highlands, and to the highlands east of Hellas. There may also be geologic deposits of water. The key now is the atmosphere. What was it? Most people say it was carbon dioxide and water, because that is what modern volcanoes on Earth give off, but the mechanism I suggested in my “Planetary Formation and Biogenesis” was the gases originally would be reduced, that is mainly methane and ammonia. The methane would provide some sort of greenhouse effect, but ammonia on contact with ice at minus 80 degrees C or above, dissolves in the ice and makes an ammonia/water solution. This, I propose, was the fluid. As the fluid goes north, winds and warmer temperatures would drive off some of the ammonia so oddly enough, as the fluid gets warmer, ice starts to freeze. Ammonia in the air will go and melt more snow. (This is not all that happens, but it should happen.)  Eventually, the ammonia has gone, and the water sinks into the ground where it freezes out into a massive buried ice sheet.

If so, we can now see where the catastrophic flows come from. We have the ice deposits where required. We now require at least fumaroles to be generated underneath the ice. The Margaritifer Chaos is within plausible distance of major volcanism, and of tectonic activity (near the mouth of the Valles Marineris system). Now, let us suppose the gases emerge. Methane immediately forms clathrates with the ice (enters the ice structure and sits there), because of the pressure. The ammonia dissolves ice and forms a small puddle below. This keeps going over time, but as it does, the amount of water increases and the amount of ice decreases. Eventually, there comes a point where there is insufficient ice to hold the methane, and pressure builds up until the whole system ruptures and the mass of fluid pours out. With the pressure gone, the remaining ice clathrates start breaking up explosively. Erosion is caused not only by the fluid, but by exploding ice.

The point then is, is there any evidence for this? The answer is, so far, no. However, if this mechanism is correct, there is more to the story. The methane will be oxidised in the atmosphere to carbon dioxide by solar radiation and water. Ammonia and carbon dioxide will combine and form ammonium carbonate, then urea. So if this is true, we expect to find buried where there had been water, deposits of urea, or whatever it converted to over three billion years. (Very slow chemical reactions are essentially unknown – chemists do not have the patience to do experiments over millions of years, let alone billions!) There is one further possibility. Certain metal ions complex with ammonia to form ammines, which dissolve in water or ammonia fluid. These would sink underground, and if the metal ions were there, so might be the remains of the ammines now. So we have to go to Mars and dig.

 

 

 

 

 

The Trump Enigma

They say truth is stranger than fiction, and I am starting to wonder if “they” are on to something. In my novel “Dreams Defiled”, one part of the plot involved one of the protagonists put into one of the most powerful governing positions on the planet, and of course part of the story involves how she fell from that position. One of her problems was she wanted to get things done, but she did not bother too deeply about building the necessary political links to get things done. She was her own woman. Sound familiar, other than the gender? There were two major differences, though, between her and Trump: she had no ego, and she restricted herself to simply doing. One of the criticisms of her was she did not pay enough attention to her public image.

Which gets me to the James Comey sacking. Look at the uproar, especially from the Democrat politicians that not so long ago were baying for Comey’s blood. Now as far as I am aware, there was nothing illegal about Comey’s sacking. As far as I can make out, major appointments in government agencies in the US are political. However, in my view, Trump showed serious failings in the way he presented this accomplishment. In my opinion, this is an example of when less is more. My recommendation is that Trump should have announced something like this: “I recently sacked General Flynn because he made statements that he admitted misled the Vice-President. James Comey admitted giving misleading evidence to Congress, even though under oath, and the Director of the FBI, above all else, must follow the highest standards of legal procedure. Therefore I have no option but to also sack James Comey. If Flynn does not get the benefit of any mistake, neither does Comey.” After that, say nothing. But instead, Trump and associates gave out a strange mixture of various explanations. What Trump needs more than anything else, in my opinion, is a strong disciplinarian as Chief of Staff, who will tell people, including Trump, when to shut up, and when they are speaking, make sure what they are saying is self-consistent.

So, what follows? People are claiming Trump did that to shut down the investigations into his Russian connections. I doubt that, but if he did he was wasting political power. One of the pieces of advice my fictional protagonist was given is that when put into a very high position you are given a bag of power. The more you use it yourself, the more that power gets depleted. The more you can get others to do what you want done, the fuller that bag becomes. I think that is good advice for Trump. (If you take it, Donald, an acknowledgement would be gratefully received.) As for the investigation, surely nobody thinks Comey was investigating personally? At the Director level, his job would be to ensure that his immediate underlings were ensuring major projects were being carried out, and making sure the political reporting was appropriate. The actual investigation would be done several levels lower, and that will not stop. In fact it is probably out of the hands of the FBI now that an ex-director of the FBI has been appointed as a special Counsel toinvestigate whether there was cololusion.

Following that, there was the tweet where Trump seemingly threatened Comey if he went public. That was appalling, and, for that matter, stupid. Much better would have been for Trump to have reminded Comey (publicly) that his employment contract included confidentiality clauses, and he would expect those to be honoured. Yep, more advice: stop tweeting. It does you no good at all.

Not that it stops there. As expected, Comey took hand-written notes of a discussion with Trump, and these have been leaked to the NY Times. In this, Comey was apparently “asked” if he could put the investigation into Flynn to bed. The significance of that depends on what “asked” actually means. Trump would be out of bounds to order the investigation to stop, but it is not necessarily wrong to ask Comey to hurry up and get to a conclusion. The FBI must only investigate crime, not political “appropriateness”. Meanwhile, how come the FBI is leaking a Director’s confidential notes? That itself is a crime, so who is investigating?

Then, even more bizarrely, the Washington Post, using an anonymous source, claims Trump gave the Russian Sergei Lavrov classified information about ISIS, specifically about ISIS preparing to attack aviation using laptop computers, presumably modified to contain explosive. National Security Advisor General H R McMaster denied anything classified was discussed. My first response to this is that Trump has recently banned laptop computers from being taken on board aircraft destined for the US, so that is hardly secret. But wait, there’s more! Seemingly the Democrats have finally realized that maybe the information was not that confidential, so Nancy Pelosi went on the attack and said Trump had no right to give the Russians information, even if it were in the public domain. I suppose there is something in that; the news media is so full of fake news and political speculation, why give the Russians clues as to what is true? Of course it may have eluded the baying horde that Russia and the US are supposed to be fighting ISIS, not each other. However, now there is more still: the information was not Trump’s to give – it belonged to Israel. Presumably it is better to kill some Russians than get the ownership rights wrong.

Meanwhile, I am somewhat critical of the activities of US agencies. As most will be aware, there has been a major outburst of cybercrime in the form of ransomware. I suspect anyone unaware of this has been living under a flat rock and won’t be reading this, but the point I want to make is that critical pieces of code for this attack were apparently stolen from the NSA. Stealing from the National Security Agency? How secure! After that, it was apparently sold on the web. Did the NSA not know about the theft? Are they not monitoring the web? Exactly what are they surveilling? Perfectly legal (or questionably illegal) discussions between Americans and Russians? Meanwhile, their code helps create the tools to bring havoc to hospitals, etc, around the world. If they are watching all the web why can’t they detect who was using their code and bring the miscreants to justice? This is not one of the highlights of NSA activity.

Why Are Countries Separating?

In many of my futuristic novels, I have selected a form of government to be in the background. Thus I have had a theocracy, a dictatorship, essentially no government (for the initial settlement of Mars), anarchy, crumbling “democracy” (i.e. our representative republic), real democracy, and finally, something else that I shall call federalism. The concept behind federalism is that a number of countries willingly join a Federation, and on most issues they continue on as they have always done, but there was also an over-riding Council whose function is to set a limited number of rules, and act as referees to make sure the various politicians in the countries behave. Another function is to provide factual information, and prevent political movements from achieving goals by lying. (Hey, I thought about “fake news” before it was popular, but that of course is hardly true either. Telling lies to get votes was bread and butter for the politicians of the Res Publica, and many of the inscriptions on the walls of Karnak by Ramses II had little relation with the facts.) This Federation also has to deal with the futuristic problems that we can see now, such as energy availability, resource allocation, climate change, etc. Interestingly enough, at least for me, the problems upon which the novels depended invariably arose from a similar source: people gaming the system. That may merely reflect my lack of imagination, but I rather fancy that any system will work well if all the people try to make it work. Most Romans thought Augustus was a great leader, even though he was effectively a dictator and probably the greatest manipulator ever.

The plots of these novels focused on how people were trying to get around the various rules. If there were an underlying message here, it was that rules only really work when people can see the point in them. A classic example is road rules. I suspect most of us have, at some time broken the speed limits, and while I have no intention of being specific and attracting unnecessary tickets, I know I have. I actually try to obey parking limits, but some times, well, something happens and I can’t quite make it. However, wherever I am, there is a rule on which side of the road I should drive on, and I keep to that assiduously. There is no specific preference – some countries drive on the right and others drive on the left, but a country has to choose one and stick with it, otherwise there are messy collisions all over the place. Everybody sticks to that rule because they see the point. (Confession time – once I did not. I came over a rise in Czechoslovakia, it was pitch black, and there was a little fire to my left. Suddenly, I realized the problem – there was a tank with camouflage netting parked in the middle of the road. I evaded around the left, not the right, because being in a British car I could better see the space I could use on my right, and also because I was better trained in sliding on gravel, etc, at speed and getting back on the road from that side. Must have given the tankers a bit of a fright. They would see a car first coming straight at their tank at 100k, then it would evade towards them and start sliding sideways, sending up showers of gravel from the side of the road.)

However, the point is, in general people will happily accept such rules if they see a point to them. Which side of the road you should drive on has a very clear point. The speed limit, perhaps less so. We recognize that road construction usually requires speed limits but I know that in some hilly terrain, overtaking a truck would be more important than sticking to a number. The problem with such rules, though is the rule makers seem to get carried away and think there should be rules for everything.

Some may recognize this Federal system. I made it up in the 1980s, and I was inspired in part by the European Union. You may recall at that time there was talk of the currency being the ecu, or European Currency Unit. Accordingly, in my novels I invented the fecu, however I put in one rule that Europe ignored. (They should have consulted me!!) In the novels, the fecu is used for transactions between companies and major corporations, and has a fixed value, a sort of resource standard. However, salaries in different countries, and goods in different countries, are paid in dollars, drachmas, whatever, and the average citizen never sees a fecu. I think the euro is a weakness of the EU because I don’t think you can run a common currency when countries have different economic policies.

Another question is whether the UE, through Brussels, has too many rules. Some say yes, others say no, but in the various discussions on Brexit, there is a lot of talk about untangling the thousands of rules. If that is a problem, there are too many of them. Good rules have a wide acceptance, and they could stay.

Which naturally brings me to the French election. All the commentators I have read say the French were upset over EU rules, and wanted change. So, what do they do? They elect a plutocrat, a banker! Trust the French – reminds me of “plus ça change, plus c’est la même chose” (Jean-Baptiste Alphonse Karr) which translates out as “the more it changes, the more it is the same thing”. So, how do you get rid of the rule of plutocrats? The French elect one. The British go the indirect way and try the “go it alone” way. Neither will probably work, but in answer to the title question, I think it is because so many voters have given up on traditional representatives acting in the interests of the population at large they are prepared to try anything.

The Need for, and the Problems of, Recycling

The modern economies rely on the supply of raw materials, and of these, elements are the most critical because there are no alternatives to them. Businesses will collapse if certain elements became unavailable, and the British Geological Society puts out a “risk list” of elements that have a risk of supply disruption. The list is debatable, because it includes political risk, thus the most risky from their perspective are the rare earth elements, the problem here being that China is essentially the main producer and reserve holder. These elements’ risk factors also depend on their demand, thus if there is no known use for something, it has zero risk because even if there is none of it, who cares? However, the overall conclusion is, we could have a problem. As in many such issues, not everyone agrees. Staff at the University of Geneva have published a report arguing that there is no shortage, at least for the foreseeable future. They argue you can mine over three kilometers below the Earth’s surface, or in the oceans. Whether you want to do this, or can even find the deposits, is less clear.

There is no shortage of elements but the bulk of them are distributed in very low concentrations in rock, or seawater. It may surprise some to know that there is plenty of gold in seawater. The problem is, it is rather dilute, and of course there are massive amounts of other materials. Thus there is about eleven tonnes of gold in a trillion tonnes of seawater. Good luck trying to get it out. Same with the rare earth elements. They are not especially rare; however they are particularly rare in workable deposits. Part of the problem is their chemistry has a certain similarity to aluminium, and as a result, they tend to be spread out amongst feldsic/granitic material and as microscopic inclusions (mixed with a lot of other stuff) in basalt. Rather interestingly, there are massive deposits on the Moon, where, as the Moon cooled down, the various rocks crystallised into solids, and one of the last of the liquids to solidify was KREEP, a mix of potassium (K), rare earth elements, and phosphate (P). This also indicates the reason why we have ore deposits on Earth: geological processing. Taking gold as an example, it, and silica dissolve in supercritical water, and as the water comes to the surface and cools down, the gold and the silica come out of solution, which is why you find gold in quartz veins. There are, of course, a variety of geological routes to make ores, but geology is a slow process, so once we run out of easy to find deposits, we have a deep problem. And on a planet such as Mars, there has not been so much geological processing, and no plate tectonics.

One way out of this is recycling, if you can work out how to do it and make a dollar. One big user of rare elements is mobile phones. Thus the “swipe-screen” uses indium/tin oxide, the electronics use copper, silver and gold for carrying current, tantalum for microcapacitors, and neodymium in the magnets. These are the critical elements, and in general there are no substitutes for their specific uses. However, the total number of elements used can be up to sixty. The problem for recycling is first, to get hold of the old ones, as opposed to have them lying about or thrown in the trash, and then to separate out what you want. If you simply melt them, you get a horrible mix. The process could be simplified if the phones could be split into parts, thus only the screens contain indium, but how do you do that?

Early on in my scientific career, I was asked by a company to devise a means of recycling coloured plastics. I did this, a pilot plant was built, a few bugs were ironed out and we could recycle coloured polyethylene to get a very light beige product that could be made into new coloured products by the addition of pigments, and the casual user would not know the difference between that and new plastics for most uses. So this should have been a success? Well, no. There were two problems. This was during the oil crisis of the seventies, and what had happened was that there was an oversupply of new polyethylene in the world. Such surplus was dumped on the New Zealand market, where “it would not do any harm”. That dumping made the venture economically unsustainable. Some time later, the dumping stopped, but by this time the original company had lost interest. Also, the manufacturers introduced more cross-linking, and in a quick demonstration, the process did not work without altering the conditions beyond what had been assumed. There were ways around that, but the warning was clear: the manufacturers were not being friendly to recycling as they kept their information close to their chests. Such changes really hinder recycling. However, that was not the worst: new laminates started appearing, and these were a horror for recycling because the two or more different plastics put together as layers do not separate easily, and any product made from a resultant mix will be of very low quality.

So, we can either have a problem with elements, or we can recycle. Recyclers tend not to have the high technology of the multinational corporations, so my recommendation is, manufacturers should be made to design their goods in a way that aids recycling. For example, a laptop or a mobile phone has lithium ion batteries. It is also essentially impossible to get the battery out when it dies and leave the item in a workable condition. It might suit the manufacturer to force the consumer to buy another laptop as opposed to a new battery, but as the technology matures, is that good enough? Similarly, if the motherboards could be removed/replaced, that would aid recycling and also reduce demand for new gadgets. When I was young, people fixed things. I think it is time to return to those times, and also make objects as recyclable as possible. The problem then is, how do you manage that in a market where competition rules, and the consumer does not think about recycling when he or she buys a new product?